A Recursive Algorithm for MultiFrequency Acoustic Inverse Source Problems

An iterative/recursive algorithm is studied for recovering unknown sources of acoustic field with multifrequency measurement data. Under additional regularity assumptions on source functions, the first convergence result toward multifrequency inverse source problems is obtained by assuming the background medium is homogeneous and the measurement data is noise-free. Error estimates are also provided when the observation data is contaminated by noise. Numerical examples verify the reliability and efficiency of our proposed algorithm.

[1]  Nicolas Valdivia,et al.  Acoustic source identification using multiple frequency information , 2009 .

[2]  Junshan Lin,et al.  A multi-frequency inverse source problem , 2010 .

[3]  H. Ammari Mathematical and Statistical Methods for Multistatic Imaging , 2013 .

[4]  Michel Defrise,et al.  A note on stopping rules for iterative regularisation methods and filtered SVD , 1987 .

[5]  Plamen Stefanov,et al.  Thermoacoustic tomography arising in brain imaging , 2010, 1009.1687.

[6]  N. Bojarski,et al.  A survey of the near-field far-field inverse scattering inverse source integral equation , 1982 .

[7]  A. J. Devaney,et al.  Radiating and nonradiating classical current distributions and the fields they generate , 1973 .

[8]  S. Arridge Optical tomography in medical imaging , 1999 .

[9]  Stefan Kindermann,et al.  SUBSPACES OF STABILITY IN THE CAUCHY PROBLEM FOR THE HELMHOLTZ EQUATION , 2011 .

[10]  A. J. Devaney,et al.  The Inverse Source Problem in Non-homogeneous Background Media , 2001 .

[11]  Shui-Nee Chow,et al.  Numerical solution of an inverse medium scattering problem with a stochastic source , 2010 .

[12]  Jin Cheng,et al.  Increasing stability in the inverse source problem with many frequencies , 2016 .

[13]  Richard W. Ziolkowski,et al.  On the radiating and nonradiating components of scalar, electromagnetic, and weak gravitational sources , 1999 .

[14]  Jack K. Cohen,et al.  Nonuniqueness in the inverse source problem in acoustics and electromagnetics , 1975 .

[15]  Robert P. Porter Diffraction-Limited Scalar Image Formation with Holograms of Arbitrary Shape , 1970 .

[16]  R. P. Porter,et al.  Holography and the inverse source problem , 1982 .

[17]  Kisik Kim,et al.  Non-radiating monochromatic sources and their fields , 1986 .

[18]  A El Badia,et al.  Some remarks on the problem of source identification from boundary measurements , 1998 .

[19]  Vianey Villamizar,et al.  On the multi-frequency inverse source problem in heterogeneous media , 2012, 1312.7395.

[20]  Sergei V. Pereverzev,et al.  Regularization Theory for Ill-Posed Problems: Selected Topics , 2013 .

[21]  Gang Bao,et al.  Inverse Medium Scattering Problems for Electromagnetic Waves , 2005, SIAM J. Appl. Math..

[22]  Carlos J. S. Alves,et al.  Full identification of acoustic sources with multiple frequencies and boundary measurements , 2009 .

[23]  Otmar Scherzer,et al.  A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions , 1998 .

[24]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[25]  A J Devaney,et al.  Inverse source problem and minimum-energy sources. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[27]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[28]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[29]  Junshan Lin,et al.  Numerical solution of the inverse source problem for the Helmholtz Equation with multiple frequency data , 2011 .

[30]  Edwin A. Marengo,et al.  Inverse Source Problem in Nonhomogeneous Background Media. Part II: Vector Formulation and Antenna Substrate Performance Characterization , 2008, SIAM J. Appl. Math..

[31]  H. Ammari,et al.  Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging , 2013 .

[32]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[33]  Gang Bao,et al.  An inverse random source problem for the Helmholtz equation , 2013, Math. Comput..