Chaos Robustness and Strength in thermomechanical Shape Memory oscillators Part II: numerical and Theoretical Evaluation
暂无分享,去创建一个
[1] Davide Bernardini,et al. Chaos Robustness and Strength in thermomechanical Shape Memory oscillators Part I: a Predictive Theoretical Framework for the Pseudoelastic Behavior , 2011, Int. J. Bifurc. Chaos.
[2] Celso Grebogi,et al. A direct numerical method for quantifying regular and chaotic orbits , 2004 .
[3] P. Müller. Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .
[4] D. Bernardini. Models of hysteresis in the framework of thermomechanics with internal variables , 2001 .
[5] Jan Awrejcewicz,et al. Evolution of chaotic regions in control parameter planes depending on hysteretic dissipation , 2005 .
[6] Jan Awrejcewicz. Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems , 2009 .
[7] Iberê L. Caldas,et al. Calculation of Lyapunov exponents in systems with impacts , 2004 .
[8] Davide Bernardini,et al. Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators , 2005 .
[9] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[10] T. Pence,et al. Uniaxial Modeling of Multivariant Shape-Memory Materials with Internal Sublooping using Dissipation Functions , 2005 .
[11] J. Awrejcewicz,et al. Hysteresis modelling and chaos prediction in one- and two-DOF hysteretic models , 2007 .
[12] M. Rader,et al. A computer model , 1996, IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science.
[13] G. Rega,et al. Numerical characterization of the chaotic nonregular dynamics of pseudoelastic oscillators , 2009 .
[14] A. Nayfeh,et al. Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .
[15] Davide Bernardini,et al. The influence of model parameters and of the thermomechanical coupling on the behavior of shape memory devices , 2010 .