High Hole Mobility in GaAs1-xBix Alloys

A hole mobility of ∼200 cm2 V-1 s-1 was demonstrated for GaAs1-xBix (x ≤4%). This value is comparable to that of GaAs with the same hole concentration. The hole mobility of GaAs1-xBix (x ≈5%) degrades, but is still larger than the reported values for GaAs1-xBix. Despite concerns regarding the degradation of hole mobility in GaAs1-xBix due to scattering at Bi-related localized states near the valence band, p-type GaAs1-xBix was able to be obtained without degradation of hole mobility. This is probably owing to the surfactant effect of the bismuth atoms during growth.

[1]  J. Zide,et al.  Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material , 2011 .

[2]  R. Reedy,et al.  Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs 1 − x Bi x , 2011 .

[3]  T. Tiedje,et al.  Temperature dependence of hole mobility in GaAs1―XBiX alloys , 2010 .

[4]  J. H. Blokland,et al.  Compositional dependence of the exciton reduced mass in GaAs1-xBix (x=0-10%) , 2010 .

[5]  Yoriko Tominaga,et al.  Low Temperature Dependence of Oscillation Wavelength in GaAs1-xBix Laser by Photo-Pumping , 2010 .

[6]  M. Koch,et al.  Clustering effects in Ga(AsBi) , 2010 .

[7]  T. Tiedje,et al.  Composition dependence of photoluminescence of GaAs1-xBix alloys , 2009 .

[8]  J. Kollár,et al.  Bismuth-stabilized (2x1) and (2x4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study , 2008 .

[9]  K. Oe,et al.  Structural investigation of GaAs1-xBix/GaAs multiquantum wells , 2008 .

[10]  R. C. Reedy,et al.  Effects of Bismuth on Wide-Depletion-Width GaInNAs Solar Cells , 2008 .

[11]  A. Krotkus,et al.  Valence band anticrossing in GaBixAs1−x , 2007 .

[12]  K. Oe,et al.  Temperature dependence of Bi behavior in MBE growth of InGaAs/InP , 2007 .

[13]  K. Oe,et al.  Molecular-beam epitaxy and characteristics of GaNyAs1−x−yBix , 2005 .

[14]  K. Oe,et al.  New III–V Semiconductor InGaAsBi Alloy Grown by Molecular Beam Epitaxy , 2005 .

[15]  K. Oe,et al.  Metastable GaAsBi Alloy Grown by Molecular Beam Epitaxy , 2003 .

[16]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[17]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[18]  François Schiettekatte,et al.  Molecular beam epitaxy growth of GaAs1−xBix , 2003 .

[19]  D. Young,et al.  Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena , 2003 .

[20]  M. Scheffler,et al.  Adatom kinetics on and below the surface: the existence of a new diffusion channel. , 2003, Physical review letters.

[21]  O. Wada,et al.  Temperature Dependence of GaAs1-xBix Band Gap Studied by Photoreflectance Spectroscopy , 2003 .

[22]  Chen,et al.  Spontaneous formation of indium-rich nanostructures on InGaN(0001) surfaces , 2000, Physical review letters.

[23]  S. Ho,et al.  Growth of InxGa1−xAs/GaAs heterostructures using Bi as a surfactant , 2000 .

[24]  Kunishige Oe,et al.  New Semiconductor Alloy GaAs1-xBix Grown by Metal Organic Vapor Phase Epitaxy , 1998 .

[25]  Charles W. Tu,et al.  Band Anticrossing in III-N-V Alloys , 2001 .