Error-Detecting in Monotone Span Programs with Application to Communication Efficient Multi-Party Computation

Recent improvements in the state-of-the-art of MPC for nonfull-threshold access structures introduced the idea of using a collisionresistant hash functions and redundancy in the secret-sharing scheme to construct a communication-efficient MPC protocol which is computationallysecure against malicious adversaries, with abort. The prior work is based on replicated secret-sharing; in this work we extend this methodology to any multiplicative LSSS implementing a Q2 access structure. To do so we need to establish a folklore property of error detection for such LSSS and their associated Monotone Span Programs. In doing so we obtain communication-efficient online and offline protocols for MPC in the pre-processing model.

[1]  Tal Rabin,et al.  Verifiable secret sharing and multiparty protocols with honest majority , 1989, STOC '89.

[2]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[3]  Rafail Ostrovsky,et al.  Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority , 2012, CRYPTO.

[4]  Vincent Rijmen,et al.  Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches , 2011, Journal of Cryptology.

[5]  Ivan Damgård,et al.  Secure Multiparty Computation Goes Live , 2009, Financial Cryptography.

[6]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  Marcel Keller,et al.  Reducing Communication Channels in MPC , 2018, IACR Cryptol. ePrint Arch..

[8]  Ueli Maurer,et al.  Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract) , 1997, PODC '97.

[9]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[10]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[11]  Ingrid Verbauwhede,et al.  Consolidating Masking Schemes , 2015, CRYPTO.

[12]  Vincent Rijmen,et al.  Higher-Order Threshold Implementations , 2014, ASIACRYPT.

[13]  Ueli Maurer,et al.  General Secure Multi-party Computation from any Linear Secret-Sharing Scheme , 2000, EUROCRYPT.

[14]  Avi Wigderson,et al.  Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract) , 1988, STOC.

[15]  Ueli Maurer,et al.  Secure multi-party computation made simple , 2002, Discret. Appl. Math..

[16]  Yehuda Lindell,et al.  High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority , 2016, IACR Cryptol. ePrint Arch..

[17]  Dan Bogdanov,et al.  Students and Taxes: a Privacy-Preserving Social Study Using Secure Computation , 2015, IACR Cryptol. ePrint Arch..

[18]  Ivan Damgård,et al.  Semi-Homomorphic Encryption and Multiparty Computation , 2011, IACR Cryptol. ePrint Arch..

[19]  Carles Padró,et al.  On Codes, Matroids, and Secure Multiparty Computation From Linear Secret-Sharing Schemes , 2005, IEEE Transactions on Information Theory.

[20]  Ivan Damgård,et al.  Multiparty Computation from Somewhat Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..

[21]  Marcel Keller,et al.  Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the SPDZ Limits , 2013, ESORICS.

[22]  Bart Preneel,et al.  On the Size of Monotone Span Programs , 2004, SCN.

[23]  Anna Gál,et al.  Lower bounds for monotone span programs , 2005, computational complexity.

[24]  Yuval Ishai,et al.  Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation , 2005, TCC.

[25]  Donald Beaver,et al.  Quorum-Based Secure Multi-party Computation , 1998, EUROCRYPT.

[26]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[27]  Donald Beaver,et al.  Efficient Multiparty Protocols Using Circuit Randomization , 1991, CRYPTO.

[28]  Ivan Damgård,et al.  Asynchronous Multiparty Computation: Theory and Implementation , 2008, IACR Cryptol. ePrint Arch..

[29]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[30]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[31]  ME Marten Secret key sharing and secret key generation , 1997 .

[32]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[33]  Yehuda Lindell,et al.  High-Throughput Secure Three-Party Computation for Malicious Adversaries and an Honest Majority , 2017, IACR Cryptol. ePrint Arch..

[34]  Marcel Keller,et al.  MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer , 2016, IACR Cryptol. ePrint Arch..

[35]  Dan Bogdanov,et al.  Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.

[36]  Silvio Micali,et al.  A Completeness Theorem for Protocols with Honest Majority , 1987, STOC 1987.

[37]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[38]  Mitsuru Ito,et al.  Multiple assignment scheme for sharing secret , 1993, Journal of Cryptology.