A memory-based hysteresis model in piezoelectric actuators

A mathematical memory-based model is proposed to capture the hysteresis behavior in piezoelectric actuators. It is observed that the ascending (descending) hysteresis curves are alike and converge to one point without memory saturation. Therefore, two, dominant curves are determined and expressed as continuous functions, and the other hysteresis curves are modeled using two dominant curves through nonlinear transforming of coordinate axis. In the event ofmemory saturation, a new converging point is used to compensate the model prediction error. The experimental study has been carried out and our proposed model prediction method is compared with PI model and the linear model. It shows that the proposed model prediction method is better than other two methods.

[1]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[2]  Saeid Bashash,et al.  Recursive Memory-based Hysteresis Modeling for Solid-state Smart Actuators , 2009 .

[3]  W. Marsden I and J , 2012 .

[4]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[5]  Saeid Bashash,et al.  Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems , 2007, IEEE Transactions on Control Systems Technology.

[6]  John S. Baras,et al.  Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.

[7]  N. Jalili,et al.  Underlying memory-dominant nature of hysteresis in piezoelectric materials , 2006 .

[8]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[9]  Saeid Bashash,et al.  A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators , 2008 .

[10]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[11]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[12]  Ying Feng,et al.  Hysteresis compensation for smart actuators using inverse generalized Prandtl-Ishlinskii model , 2009, 2009 American Control Conference.

[13]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[14]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[15]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[16]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[17]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[18]  John S. Baras,et al.  Control of hysteresis in smart actuators with application to micro-positioning , 2005, Syst. Control. Lett..

[19]  S. Li-ning,et al.  Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .

[20]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[21]  Yuansheng Chen,et al.  A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  Qingsong Xu,et al.  Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine , 2012, IEEE Transactions on Industrial Electronics.

[23]  I. Mayergoyz,et al.  Preisach modeling of magnetostrictive hysteresis , 1991 .

[24]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[25]  Qingsong Xu,et al.  Hysteresis modeling and compensation of a piezostage using least squares support vector machines , 2011 .

[26]  H. Janocha,et al.  Adaptive inverse control of piezoelectric actuators with hysteresis operators , 1999, 1999 European Control Conference (ECC).