A memory-based hysteresis model in piezoelectric actuators
暂无分享,去创建一个
[1] Musa Jouaneh,et al. Modeling hysteresis in piezoceramic actuators , 1995 .
[2] Saeid Bashash,et al. Recursive Memory-based Hysteresis Modeling for Solid-state Smart Actuators , 2009 .
[3] W. Marsden. I and J , 2012 .
[4] Ping Ge,et al. Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..
[5] Saeid Bashash,et al. Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems , 2007, IEEE Transactions on Control Systems Technology.
[6] John S. Baras,et al. Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.
[7] N. Jalili,et al. Underlying memory-dominant nature of hysteresis in piezoelectric materials , 2006 .
[8] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[9] Saeid Bashash,et al. A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators , 2008 .
[10] John S. Baras,et al. Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..
[11] D. Croft,et al. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .
[12] Ying Feng,et al. Hysteresis compensation for smart actuators using inverse generalized Prandtl-Ishlinskii model , 2009, 2009 American Control Conference.
[13] Musa Jouaneh,et al. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .
[14] K. Kuhnen,et al. Inverse control of systems with hysteresis and creep , 2001 .
[15] J. Koenderink. Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.
[16] C. Su,et al. An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.
[17] J.A. De Abreu-Garcia,et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.
[18] John S. Baras,et al. Control of hysteresis in smart actuators with application to micro-positioning , 2005, Syst. Control. Lett..
[19] S. Li-ning,et al. Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .
[20] Ciro Visone,et al. Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .
[21] Yuansheng Chen,et al. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[22] Qingsong Xu,et al. Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine , 2012, IEEE Transactions on Industrial Electronics.
[23] I. Mayergoyz,et al. Preisach modeling of magnetostrictive hysteresis , 1991 .
[24] Jonq-Jer Tzen,et al. Modeling of piezoelectric actuator for compensation and controller design , 2003 .
[25] Qingsong Xu,et al. Hysteresis modeling and compensation of a piezostage using least squares support vector machines , 2011 .
[26] H. Janocha,et al. Adaptive inverse control of piezoelectric actuators with hysteresis operators , 1999, 1999 European Control Conference (ECC).