The dimensions of individual strings and sequences
暂无分享,去创建一个
[1] L. Levin,et al. THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .
[2] P. Martin-Lof,et al. Complexity Oscillations in Infinite Binary Sequences , 2004 .
[3] F. Hausdorff. Dimension und äußeres Maß , 1918 .
[4] Juris Hartmanis,et al. On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line , 1994, J. Comput. Syst. Sci..
[5] W. Fitch. Random sequences. , 1983, Journal of molecular biology.
[6] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[7] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.
[8] G. Chaitin. Incompleteness theorems for random reals , 1987 .
[9] Stephen A. Fenner. Gales and supergales are equivalent for defining constructive Hausdorff dimension , 2002, ArXiv.
[10] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[11] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[12] John M. Hitchcock. Correspondence Principles for Effective Dimensions , 2004, Theory of Computing Systems.
[13] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[14] Michiel van Lambalgen,et al. Von Mises' Definition of Random Sequences Reconsidered , 1987, J. Symb. Log..
[15] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[16] Claus-Peter Schnorr,et al. The process complexity and effective random tests. , 1972, STOC.
[17] I. Good. The fractional dimensional theory of continued fractions , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] Ludwig Staiger,et al. A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.
[19] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[20] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[21] Ludwig Staiger,et al. Kolmogorov Complexity and Hausdorff Dimension , 1989, FCT.
[22] D. Loveland. The Kleene hierarchy classification of recursively random sequences , 1966 .
[23] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..
[24] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[25] L. Staiger. How Much can You Win when Your Adversary is Handicapped , 2000 .
[26] S. Kakutani. On Equivalence of Infinite Product Measures , 1948 .
[27] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[28] R. Soare. Recursively enumerable sets and degrees , 1987 .
[29] C. Schnorr. A Survey of the Theory of Random Sequences , 1977 .
[30] Jack H. Lutz,et al. Gales and the Constructive Dimension of Individual Sequences , 2000, ICALP.
[31] András Sárközy,et al. Numbers, information and complexity , 2000 .
[32] D. Loveland. A New Interpretation of the von Mises' Concept of Random Sequence† , 1966 .
[33] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[34] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.
[35] Jack H. Lutz,et al. Dimension in complexity classes , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.
[36] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[37] A. Besicovitch. On the sum of digits of real numbers represented in the dyadic system. , 1935 .
[38] D. C. Cooper,et al. Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.
[39] P. Billingsley,et al. Ergodic theory and information , 1966 .
[40] G. Kreisel. Note on arithmetic models for consistent formulae of the predicate calculus , 1950 .
[41] A. N. Kolmogorov. Combinatorial foundations of information theory and the calculus of probabilities , 1983 .
[42] H. Eggleston. The fractional dimension of a set defined by decimal properties , 1949 .
[43] P. Odifreddi. Classical recursion theory , 1989 .
[44] A. Shiryayev. On Tables of Random Numbers , 1993 .
[45] Boris Ryabko,et al. The Complexity and Effectiveness of Prediction Algorithms , 1994, J. Complex..
[46] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..
[47] I. Good. C327. Addenda for “the fractional dimensional theory of continued fractions”, proc. cambridge philos. soc. 37 (1941), 199-228. , 1989 .
[48] Jaakko Hintikka,et al. Basic Problems in Methodology and Linguistics , 1977 .
[49] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..