Impulsive synchronization of a class of chaotic systems

This paper deals with the impulsive synchronization problem of a class of chaotic systems. By employing the comparison principle and the linear matrix inequalities approach, some less conservative and easily verified sufficient conditions for impulsive synchronization of this class of chaotic systems are derived, these new sufficient conditions can be applied to analyze the impulsive synchronization of the Chua's oscillators. Moreover, the numerical simulation of Chua's oscillators under impulsive control shows the effectiveness of the proposed theory, and obtains better estimation of the boundary of the stable region than the existing approaches.

[1]  Jinde Cao,et al.  Impulsive synchronization of two nonidentical chaotic systems with time-varying delay , 2011 .

[2]  Tao Yang,et al.  In: Impulsive control theory , 2001 .

[3]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[4]  Xiaofeng Liao,et al.  Impulsive synchronization of chaotic systems. , 2005, Chaos.

[5]  Tao Yang,et al.  Impulsive control , 1999, IEEE Trans. Autom. Control..

[6]  Chun-Mei Yang,et al.  Impulsive synchronization of Lorenz systems , 1997 .

[7]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[8]  C. E. Puente,et al.  The Essence of Chaos , 1995 .

[9]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[10]  Changyun Wen,et al.  Impulsive control for the stabilization and synchronization of Lorenz systems , 2000 .

[11]  Z. Ge,et al.  Phase synchronization of coupled chaotic multiple time scales systems , 2004 .

[12]  Zhengguo Li,et al.  Analysis and design of impulsive control systems , 2001, IEEE Trans. Autom. Control..

[13]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[14]  Jinde Cao,et al.  Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. , 2009, Chaos.

[15]  Qidi Wu,et al.  Less conservative conditions for asymptotic stability of impulsive control systems , 2003, IEEE Trans. Autom. Control..

[16]  Chien-Cheng Chang,et al.  Simple adaptive synchronization of chaotic systems with random components. , 2006, Chaos.

[17]  P. Olver Nonlinear Systems , 2013 .

[18]  P. K. Roy,et al.  Lag synchronization and scaling of chaotic attractor in coupled system. , 2012, Chaos.