A New Multinomial Model and a Zero Variance Estimation

The analysis of categorical response data through the multinomial model is very frequent in many statistical, econometric, and biometric applications. However, one of the main problems is the precise estimation of the model parameters when the number of observations is very low. We propose a new Bayesian estimation approach where the prior distribution is constructed through the transformation of the multivariate beta of Olkin and Liu (2003). Moreover, the application of the zero-variance principle allows us to estimate moments in Monte Carlo simulations with a dramatic reduction of their variances. We show the advantages of our approach through applications to some toy examples, where we get efficient parameter estimates.

[1]  S. RichardsonINSERM,et al.  Bayesian analysis of case-control studies with categorical covariates , 2001 .

[2]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[3]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[4]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[5]  O. Vorobyev,et al.  Discrete multivariate distributions , 2008, 0811.0406.

[6]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[7]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[8]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[9]  B. Rannala,et al.  Detecting immigration by using multilocus genotypes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. G. Morel,et al.  A finite mixture distribution for modelling multinomial extra variation , 1993 .

[11]  A. W. Kemp,et al.  The Dirichlet: A comprehensive model of buying behaviour , 1984 .

[12]  S. Brier Analysis of contingency tables under cluster sampling , 1980 .

[13]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[14]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[15]  B. Jourdain,et al.  Does waste-recycling really improve Metropolis-Hastings Monte Carlo algorithm? , 2006, math/0611949.

[16]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[17]  Bo Liu,et al.  Entry modes of foreign direct investment in China: a multinomial logit approach , 2005 .

[18]  J. Ghosh,et al.  An Introduction to Bayesian Analysis: Theory and Methods , 2006 .

[19]  Robert Gramling,et al.  Prevalence of multiple chronic disease risk factors. 2001 National Health Interview Survey. , 2004, American journal of preventive medicine.

[20]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[21]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[22]  J. Hobert,et al.  A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms , 2008, 0804.0671.

[23]  N. L. Johnson,et al.  Continuous Multivariate Distributions, Volume 1: Models and Applications , 2019 .

[24]  A. Kan,et al.  A multinomial Bayesian approach to the estimation of population and vocabulary size , 1987 .

[25]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[26]  R M Engeman,et al.  On analytical methods and inferences for 2 x 2 contingency table data from medical studies. , 1991, Computers and biomedical research, an international journal.

[27]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[28]  W. Kamakura,et al.  Modeling Preference and Structural Heterogeneity in Consumer Choice , 1996 .

[29]  M. Caffarel,et al.  Zero-Variance Principle for Monte Carlo Algorithms , 1999, cond-mat/9911396.

[30]  J. Atchison,et al.  Logistic-normal distributions:Some properties and uses , 1980 .

[31]  Ingram Olkin,et al.  A bivariate beta distribution , 2003 .

[32]  Sylvia Richardson,et al.  Equivalence of prospective and retrospective models in the Bayesian analysis of case-control studies , 2004 .

[33]  Samiran Sinha,et al.  Bayesian Analysis of Case-Control Studies , 2005 .

[34]  J. Mosimann On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions , 1962 .

[35]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[36]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..