Extreme nanophotonics from ultrathin metallic gaps

Ultrathin dielectric gaps between metals can trap plasmonic optical modes with surprisingly low loss and with volumes below 1 nm3. We review the origin and subtle properties of these modes, and show how they can be well accounted for by simple models. Particularly important is the mixing between radiating antennas and confined nanogap modes, which is extremely sensitive to precise nanogeometry, right down to the single-atom level. Coupling nanogap plasmons to electronic and vibronic transitions yields a host of phenomena including single-molecule strong coupling and molecular optomechanics, opening access to atomic-scale chemistry and materials science, as well as quantum metamaterials. Ultimate low-energy devices such as robust bottom-up assembled single-atom switches are thus in prospect.This Review discusses the origins of localized plasmon resonances in few-nanometre or sub-nanometre gaps between metal nanoparticles and metal films, as well recent experimental observations and potential future directions.

[1]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[2]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[3]  P. Nordlander,et al.  Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. , 2017, The journal of physical chemistry letters.

[4]  G. T.,et al.  Luminescent detector for free-space optical communication , 2016 .

[5]  J. Baumberg,et al.  Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution. , 2019, Nano letters.

[6]  D. Englund,et al.  Probing the ultimate plasmon confinement limits with a van der Waals heterostructure , 2018, Science.

[7]  Jeremy J. Baumberg,et al.  Fast Dynamic Color Switching in Temperature‐Responsive Plasmonic Films , 2016 .

[8]  Jing Kong,et al.  Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors. , 2015, Nano letters.

[9]  Richard W. Taylor,et al.  Watching individual molecules flex within lipid membranes using SERS , 2014, Scientific Reports.

[10]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[11]  Christos Argyropoulos,et al.  Ultrafast spontaneous emission source using plasmonic nanoantennas , 2015, Nature Communications.

[12]  U. Keyser,et al.  Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities , 2016, 1612.02611.

[13]  W. Fritzsche,et al.  Electrically Excited Plasmonic Nanoruler for Biomolecule Detection. , 2016, Nano letters.

[14]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[15]  H. Atwater,et al.  Quantum nonlinear light emission in metamaterials: broadband Purcell enhancement of parametric downconversion , 2018 .

[16]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[17]  Javier Aizpurua,et al.  Linking classical and molecular optomechanics descriptions of SERS. , 2017, Faraday discussions.

[18]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[19]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[20]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[21]  J. Baumberg,et al.  Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities. , 2017, Nano letters.

[22]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[23]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[24]  Jeremy J. Baumberg,et al.  Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami , 2018, Nano letters.

[25]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[26]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[27]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[28]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[29]  Resonant thermoelectric nanophotonics. , 2016, Nature nanotechnology.

[30]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[31]  Nicolas Large,et al.  Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. , 2013, Nano letters.

[32]  J. Baumberg,et al.  Revealing Nanostructures through Plasmon Polarimetry. , 2017, ACS nano.

[33]  Eric Bourillot,et al.  Direct observation of localized surface plasmon coupling , 1999 .

[34]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[35]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[36]  Gilad Haran,et al.  Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics , 2001 .

[37]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[38]  J. Baumberg,et al.  Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons , 2017, ACS photonics.

[39]  J. Fontana,et al.  Highly tunable gold nanorod dimer resonances mediated through conductive junctions , 2014 .

[40]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[41]  J. Kottmann,et al.  Plasmon resonant coupling in metallic nanowires. , 2001, Optics express.

[42]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[43]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[44]  J. Aizpurua,et al.  Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. , 2018, ACS Nano.

[45]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[46]  Pengyu Fan,et al.  Purcell effect for active tuning of light scattering from semiconductor optical antennas , 2017, Science.

[47]  Junghyun Park,et al.  Electrical tuning of a quantum plasmonic resonance. , 2017, Nature nanotechnology.

[48]  Stephan Hofmann,et al.  Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches. , 2016, Small.

[49]  J. Aizpurua,et al.  Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities. , 2016, Nano letters.

[50]  Pieter G. Kik,et al.  Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances† , 2010 .

[51]  David R. Smith,et al.  Enhanced optical bistability with film-coupled plasmonic nanocubes , 2014 .

[52]  Thang B. Hoang,et al.  Broad electrical tuning of plasmonic nanoantennas at visible frequencies , 2016 .

[53]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[54]  J. Kottmann,et al.  Spectral response of plasmon resonant nanoparticles with a non-regular shape. , 2000, Optics express.

[55]  Ravishankar Sundararaman,et al.  Plasmonic hot electron transport drives nano-localized chemistry , 2017, Nature Communications.

[56]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[57]  J. Baumberg,et al.  Understanding the plasmonics of nanostructured atomic force microscopy tips , 2016, 1607.06591.

[58]  J. Baumberg,et al.  How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror , 2017 .

[59]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[60]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[61]  David R. Smith,et al.  Control of radiative processes using tunable plasmonic nanopatch antennas. , 2014, Nano letters.

[62]  Jason M. Smith,et al.  Plasmonic Gas Sensing Using Nanocube Patch Antennas , 2016 .

[63]  Hairong Zheng,et al.  In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy , 2012, Scientific Reports.

[64]  Gennady Shvets,et al.  Photonic approach to making a material with a negative index of refraction , 2003 .

[65]  Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds , 2017, 1703.06991.

[66]  T. Taniguchi,et al.  Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. , 2015, Nature nanotechnology.

[67]  P. Nordlander,et al.  Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system , 2006 .

[68]  Matthew Pelton,et al.  Modified spontaneous emission in nanophotonic structures , 2015, Nature Photonics.

[69]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[70]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[71]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[72]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[73]  David R. Smith,et al.  Coupled-mode theory for film-coupled plasmonic nanocubes , 2014 .

[74]  Olivier J F Martin,et al.  Optical interactions in a plasmonic particle coupled to a metallic film. , 2006, Optics express.

[75]  J. Aizpurua,et al.  Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps , 2015 .

[76]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[77]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[78]  Lei Zhang,et al.  Three-dimensional plasmonic stereoscopic prints in full colour , 2014, Nature Communications.

[79]  Kai-fong Lee Principles of antenna theory , 1984 .

[80]  David R. Smith,et al.  Large‐Area Metasurface Perfect Absorbers from Visible to Near‐Infrared , 2015, Advanced materials.

[81]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[82]  G. M. Akselrod,et al.  Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. , 2016, Nano letters.

[83]  F. García-Vidal,et al.  Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities. , 2016, Physical review letters.

[84]  J. Aizpurua,et al.  Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities , 2014, ACS nano.

[85]  J. Aizpurua,et al.  Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking , 2018 .

[86]  J. Baumberg,et al.  Plasmonic tunnel junctions for single-molecule redox chemistry , 2017, Nature Communications.

[87]  Jeremy J. Baumberg,et al.  Actuating Single Nano‐Oscillators with Light , 2018 .

[88]  Jean-Jacques Greffet,et al.  Impedance of a nanoantenna and a single quantum emitter. , 2010, Physical review letters.

[89]  J. Aizpurua,et al.  Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. , 2016, ACS nano.

[90]  Javier Aizpurua,et al.  Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics , 2016 .

[91]  J. Aizpurua,et al.  Controlling subnanometer gaps in plasmonic dimers using graphene. , 2013, Nano letters.

[92]  H. Chu,et al.  Highly efficient on-chip direct electronic–plasmonic transducers , 2017 .

[93]  Alexandros Emboras,et al.  Nanoscale plasmonic memristor with optical readout functionality. , 2013, Nano letters.

[94]  Jing Kong,et al.  Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities , 2017 .

[95]  J. Aizpurua,et al.  Room-Temperature Optical Picocavities below 1 nm3 Accessing Single-Atom Geometries. , 2018, The journal of physical chemistry letters.

[96]  J. Baumberg,et al.  Capillary‐Force‐Assisted Optical Tuning of Coupled Plasmons , 2015, Advanced materials.

[97]  Tobias J Kippenberg,et al.  Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. , 2014, Nature nanotechnology.

[98]  Jinlong Yang,et al.  Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity , 2017, Nature Communications.

[99]  Jeremy J. Baumberg,et al.  Quantitative multiplexing with nano-self-assemblies in SERS , 2014, Scientific Reports.

[100]  Andrea R Tao,et al.  Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared , 2015, Nature Communications.

[101]  J. Aizpurua,et al.  Generalized circuit model for coupled plasmonic systems. , 2015, Optics express.

[102]  M. Mikkelsen,et al.  Surpassing Single Line Width Active Tuning with Photochromic Molecules Coupled to Plasmonic Nanoantennas. , 2018, Nano letters.

[103]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[104]  Dhabih V. Chulhai,et al.  The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. , 2013, Journal of the American Chemical Society.

[105]  J. Baumberg,et al.  Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering. , 2014, Physical review letters.

[106]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[107]  David R. Smith,et al.  Effective-medium description of a metasurface composed of a periodic array of nanoantennas coupled to a metallic film , 2017 .

[108]  David R. Smith,et al.  Toward Multispectral Imaging with Colloidal Metasurface Pixels , 2017, Advanced materials.

[109]  Li Lin,et al.  Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer. , 2015, Nano letters.

[110]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[111]  J. Aizpurua,et al.  Threading plasmonic nanoparticle strings with light , 2014, Nature Communications.

[112]  Richard K. Moore,et al.  From theory to applications , 1986 .

[113]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[114]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[115]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[116]  Andrew R. Salmon,et al.  SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape , 2016, The journal of physical chemistry letters.

[117]  A. Polman,et al.  Ultrasmall mode volume plasmonic nanodisk resonators. , 2010, Nano letters (Print).

[118]  Alemayehu Nana Koya,et al.  Charge transfer plasmons: Recent theoretical and experimental developments , 2017 .

[119]  Jeremy J. Baumberg,et al.  Single-molecule optomechanics in “picocavities” , 2016, Science.

[120]  Stefan A. Maier,et al.  High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. , 2011, Nano letters.

[121]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[122]  Andrea Alù,et al.  Individual nanoantennas loaded with three-dimensional optical nanocircuits. , 2013, Nano letters.

[123]  A. Polman,et al.  Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy , 2009 .

[124]  Garnett W. Bryant,et al.  The Morphology of Narrow Gaps Modifies the Plasmonic Response , 2015 .

[125]  Christos Argyropoulos,et al.  Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas , 2016 .

[126]  Alessandro Tuniz,et al.  Interfacing optical fibers with plasmonic nanoconcentrators , 2018, Nanophotonics.

[127]  Bert Hecht,et al.  Atomic-scale confinement of resonant optical fields. , 2012, Nano letters.