Effect of methane emission increases in East Asia on atmospheric circulation and ozone

[1]  Peter Bergamaschi,et al.  Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements , 2013 .

[2]  Q. Fu,et al.  Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models , 2013 .

[3]  Shu-Chuan Lin,et al.  Trench‐parallel flow in the southern Ryukyu subduction system: Effects of progressive rifting of the overriding plate , 2013 .

[4]  L. Oman,et al.  The impact of greenhouse gases on past changes in tropospheric ozone , 2012 .

[5]  Peng Zhang,et al.  Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations , 2011 .

[6]  M. Dameris,et al.  Dynamically Forced Increase of Tropical Upwelling in the Lower Stratosphere , 2011 .

[7]  Veronika Eyring,et al.  Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models , 2010 .

[8]  Oliver Wild,et al.  How sensitive is tropospheric oxidation to anthropogenic emissions? , 2008 .

[9]  R. Garcia,et al.  Acceleration of the Brewer–Dobson Circulation due to Increases in Greenhouse Gases , 2008 .

[10]  L. Horowitz,et al.  Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality , 2008 .

[11]  M. Schoeberl,et al.  Response of stratospheric circulation and stratosphere‐troposphere exchange to changing sea surface temperatures , 2007 .

[12]  Rolando R. Garcia,et al.  Simulation of secular trends in the middle atmosphere, 1950–2003 , 2007 .

[13]  T. Shepherd,et al.  Response of the Middle Atmosphere to CO2 Doubling: Results from the Canadian Middle Atmosphere Model , 2007 .

[14]  J. Austin,et al.  Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations , 2007 .

[15]  Zhou Ren-jun,et al.  Study on the trace species in the stratosphere and their impact on climate , 2006 .

[16]  Adam A. Scaife,et al.  Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation , 2006 .

[17]  J. Austin,et al.  On the relationship between the strength of the Brewer‐Dobson circulation and the age of stratospheric air , 2006 .

[18]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[19]  Dennis L. Hartmann,et al.  Changes in the strength of the Brewer‐Dobson circulation in a simple AGCM , 2005 .

[20]  Aleksandr N. Gruzdev,et al.  Long-term changes in the mesosphere calculated by a two-dimensional model , 2005 .

[21]  Gavin A. Schmidt,et al.  An emissions‐based view of climate forcing by methane and tropospheric ozone , 2005 .

[22]  S. Petrie Basic Atmospheric Chemistry: A Quantum Chemical Study on Hydration of Mesospheric NaOH , 2004 .

[23]  P. Siegmund,et al.  A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO2 Doubling , 2004 .

[24]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[25]  D. Waugh,et al.  AGE OF STRATOSPHERIC AIR: THEORY, OBSERVATIONS, AND MODELS , 2002 .

[26]  Katharine Hayhoe,et al.  Atmospheric methane and global change , 2002 .

[27]  J. Lerner,et al.  Changes of tracer distributions in the doubled CO2 climate , 2001 .

[28]  J. Lamarque,et al.  A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2 , 2001 .

[29]  Adam A. Scaife,et al.  Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate , 2001, Nature.

[30]  Yuhang Wang,et al.  Anthropogenic forcing on tropospheric ozone and OH since preindustrial times , 1998 .

[31]  Philip J. Rasch,et al.  MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description , 1998 .

[32]  P. Rasch,et al.  MOZART, a global chemical transport model for ozone , 1998 .

[33]  Paul J. Crutzen,et al.  Changing concentration, lifetime and climate forcing of atmospheric methane , 1998 .

[34]  Simon Pinnock,et al.  Radiative forcing of climate change by CFC‐11 and possible CFC replacements , 1997 .

[35]  J. Fuglestvedt,et al.  Estimates of indirect global warming potentials for CH4, CO and NOX , 1996 .

[36]  J. Pages,et al.  Evidence of a long‐term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing , 1994 .

[37]  Timothy M. Hall,et al.  Age as a diagnostic of stratospheric transport , 1994 .

[38]  J. Lelieveld,et al.  Indirect chemical effects of methane on climate warming , 1992, Nature.

[39]  C. Lorius,et al.  Ice-core record of atmospheric methane over the past 160,000 years , 1990, Nature.

[40]  J. Holton On the Global Exchange of Mass between the Stratosphere and Troposphere , 1990 .

[41]  I. Levin,et al.  Methane consumption in aerated soils of the temperate zone , 1990 .

[42]  I. Isaksen,et al.  Antarctic ozone depletion: 2‐D model studies , 1986 .

[43]  A. Owens,et al.  A coupled one‐dimensional radiative‐convective, chemistry‐transport model of the atmosphere: 1. Model structure and steady state perturbation calculations , 1985 .

[44]  M. Khalil,et al.  Atmospheric methane in the recent and ancient atmospheres Concentrations, trends, and interhemispheric gradient , 1984 .

[45]  A. Owens,et al.  The Potential effects of increased methane on atmospheric ozone , 1982 .

[46]  D. Davis,et al.  The free radical chemistry of cloud droplets and its impact upon the composition of rain , 1982 .

[47]  M. McIntyre,et al.  Generalized Eliassen-Palm and Charney-Drazin Theorems for Waves on Axismmetric Mean Flows in Compressible Atmospheres , 1978 .

[48]  D. G. Andrews,et al.  Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration , 1976 .

[49]  P. Crutzen A discussion of the chemistry of some minor constituents in the stratosphere and troposphere , 1973 .

[50]  H. Levy Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted , 1971, Science.

[51]  L. Jianping,et al.  The possible effects of future increase in methane emission on the stratospheric water vapor and global ozone. , 2013 .

[52]  Shi Chun The quasi-biennial oscillation of water vapor in tropic stratosphere , 2009 .

[53]  L. Yi Simulation Studies on Seasonal Variations of the Stratospheric Dynamics and Trace Gases Using Coupled Chemistry-Climate Model WACCM-3 , 2009 .

[54]  Xu Li Study on H_2O and CH_4 Distributions and Variations over Qinghai-Xizang Plateau Using HALOE Data , 2008 .

[55]  L. Qiong Temporal and spatial features of atmospheric methane and its relation to ozone variation in the stratosphere , 2008 .

[56]  Chen Yue Analysis of H_2O and CH_4 Distribution Characteristics in the Middle Atmosphere Using HALOE Data , 2007 .

[57]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[58]  Wang Wei The variation of spatial-temporal distribution of the global tropopause ozone , 2006 .

[59]  A. Zadorozhny,et al.  Greenhouse gases and recovery of the Earth’s ozone layer , 2004 .

[60]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .