Membrane Lipids Determine the Antibiotic Activity of the Lantibiotic Gallidermin

[1]  H. Sahl,et al.  The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. , 2007, Biochimica et biophysica acta.

[2]  H. Sahl,et al.  Insights into In Vivo Activities of Lantibiotics from Gallidermin and Epidermin Mode-of-Action Studies , 2006, Antimicrobial Agents and Chemotherapy.

[3]  U. Rothe,et al.  The Detection of UV-induced Membrane Damages by a Combination of Two Biosensor Techniques , 2005, Photochemistry and photobiology.

[4]  R. P. Ross,et al.  Bacterial lantibiotics: strategies to improve therapeutic potential. , 2005, Current protein & peptide science.

[5]  R. Kaptein,et al.  The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics , 2004, Nature Structural &Molecular Biology.

[6]  B. de Kruijff,et al.  Assembly and stability of nisin-lipid II pores. , 2004, Biochemistry.

[7]  Alessandro Tossi,et al.  In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II‐Gly5) of Staphylococcus aureus , 2004, Molecular microbiology.

[8]  A. Heck,et al.  Lipid II Is an Intrinsic Component of the Pore Induced by Nisin in Bacterial Membranes* , 2003, Journal of Biological Chemistry.

[9]  B. de Kruijff,et al.  Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. , 2002, Biochemistry.

[10]  B. de Kruijff,et al.  Binding of Nisin Z to bilayer vesicles as determined with isothermal titration calorimetry. , 2000, Biochemistry.

[11]  A. Driessen,et al.  Bacteriocins: mechanism of membrane insertion and pore formation , 1999, Antonie van Leeuwenhoek.

[12]  H. Sahl,et al.  Role of lipid‐bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics , 1998, Molecular microbiology.

[13]  R. Rosselló-Móra,et al.  Staphylococcus succinus sp. nov., isolated from Dominican amber. , 1998, International journal of systematic bacteriology.

[14]  H. Sahl,et al.  The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. , 1997, European journal of biochemistry.

[15]  M. Gasson,et al.  Structure‐activity relationships in the peptide antibiotic nisin: antibacterial activity of fragments of nisin , 1996, FEBS letters.

[16]  T. Johnsson,et al.  Cellular Fatty Acid profiles of lactobacillus and lactococcus strains in relation to the oleic Acid content of the cultivation medium , 1995, Applied and environmental microbiology.

[17]  B. Dobner,et al.  Influence of α-branched fatty acid chains on the thermotropic behaviour of racemic 1-O-hexadecyl-2-acyl-glycero-3phosphocholines , 1995 .

[18]  B. Eisermann,et al.  Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. , 1994, Analytical biochemistry.

[19]  G. Jung Lantibiotics—Ribosomally Synthesized Biologically Active Polypeptides containing Sulfide Bridges and α,β‐Didehydroamino Acids , 1991 .

[20]  B. Dobner,et al.  Synthesis of Methyl-Branched Fatty Acids. , 1990 .

[21]  K. Entian,et al.  Gallidermin: a new lanthionine-containing polypeptide antibiotic. , 1988, European journal of biochemistry.

[22]  H. Sahl,et al.  Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles , 1985, Antimicrobial Agents and Chemotherapy.

[23]  J. P. Brown,et al.  FATTY ACID COMPOSITION OF LIPIDS FROM STREPTOCOCCUS CREMORIS AND STREPTOCOCCUS LACTIS VAR. MALTIGENES , 1963, Journal of bacteriology.

[24]  F. Breusch,et al.  Synthese der d,l-Di-n-alkyl-essigsäuren mit 19 bis 23 C-Atomen. (VI. Mitteil. über isomere und homologe Reihen)† , 1953 .

[25]  A. Driessen,et al.  University of Groningen MECHANISTIC STUDIES OF LANTIBIOTIC-INDUCED PERMEABILIZATION OF PHOSPHOLIPID-VESICLES , 2017 .

[26]  B. Dobner,et al.  Synthese mittelständig verzweigter Fettsäuren , 1989 .