An inequality between variable wiener index and variable szeged index

Abstract A well-known inequality between the Szeged and Wiener indices says that Sz ( G ) = ∑ e = i j ∈ E ( G ) n e ( i ) n e ( j ) ≥ ∑ { u , v } d ( u , v ) = W ( G ) for every graph G. In the past, variable variations of the standard topological indices were defined. Following this line, we study a natural generalisation of the above inequality, namely ∑ e = i j ∈ E ( G ) ( n e ( i ) n e ( j ) ) α ≥ ∑ { u , v } d ( u , v ) α . We show that for all trees the inequality is true if α > 1, and the opposite inequality holds if 0 ≤ α  n + 3 edges, but the opposite one does not. For general graphs we solve also the case α

[1]  Aleksandra Tepeh,et al.  Mathematical aspects of Wiener index , 2015, Ars Math. Contemp..

[2]  Aleksandra Tepeh,et al.  Some remarks on Wiener index of oriented graphs , 2016, Appl. Math. Comput..

[3]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[4]  Frank Harary,et al.  Status and Contrastatus , 1959 .

[5]  Martin Knor,et al.  On a conjecture about the ratio of Wiener index in iterated line graphs , 2018, Art Discret. Appl. Math..

[6]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[7]  Martin Knor,et al.  Wiener Index of Line Graphs , 2014 .

[8]  Ľubomír Šoltés,et al.  Transmission in graphs: A bound and vertex removing , 1991 .

[9]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[10]  Andrey A. Dobrynin,et al.  The Szeged Index and an Analogy with the Wiener Index , 1995, J. Chem. Inf. Comput. Sci..

[11]  Martin Knor,et al.  Graphs whose Wiener index does not change when a specific vertex is removed , 2018, Discret. Appl. Math..

[12]  Kexiang Xu,et al.  A Survey on Graphs Extremal with Respect to Distance-Based Topological Indices , 2014 .

[13]  Hua Wang,et al.  Sum of weighted distances in trees , 2019, Discret. Appl. Math..

[14]  Shuchao Li,et al.  On the difference between the (revised) Szeged index and the Wiener index of cacti , 2018, Discret. Appl. Math..

[15]  Roger C. Entringer,et al.  Distance in graphs , 1976 .

[16]  Marthe Bonamy,et al.  On the difference between the Szeged and the Wiener index , 2016, Appl. Math. Comput..

[17]  I. Gutman,et al.  A class of modified Wiener indices , 2004 .

[18]  Aleksandra Tepeh,et al.  Digraphs with large maximum Wiener index , 2016, Appl. Math. Comput..

[19]  Riste Skrekovski,et al.  Leapfrog fullerenes and Wiener index , 2017, Appl. Math. Comput..

[20]  Shuchao Li,et al.  Proofs of three conjectures on the quotients of the (revised) Szeged index and the Wiener index and beyond , 2017, Discret. Math..

[21]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.