Lattice Boltzmann simulations of capillary filling: Finite vapour density effects

Numerical simulations of two-dimensional capillary filling using the pseudo-potential lattice Boltzmann model for multiphase fluids are presented. It is shown that whenever the density of the light-phase exceeds about ten percent of the dense phase, the front motion proceeds through a combined effect of capillary advection and condensation.

[1]  L. Biferale,et al.  Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows , 2005, Journal of Fluid Mechanics.

[2]  Richard Lucas,et al.  Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten , 1918 .

[3]  J. Timonen,et al.  Lattice-Boltzmann Simulation of Capillary Rise Dynamics , 2002 .

[4]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[5]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[6]  S Succi,et al.  Generalized lattice Boltzmann method with multirange pseudopotential. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  P. D. Lark,et al.  An experimental study of the washburn equation for liquid flow in very fine capillaries , 1979 .

[8]  A. Nepomnyashchy,et al.  Self-assembly, pattern formation and growth phenomena in nano-systems , 2006 .

[9]  Miko Elwenspoek,et al.  Capillary filling speed of water in nanochannels , 2004 .

[10]  A. Wagner,et al.  Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  S Succi,et al.  Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. G. Crighton,et al.  MODEL EQUATIONS OF NONLINEAR ACOUSTICS , 1979 .

[14]  Yu-Chong Tai,et al.  The marching velocity of the capillary meniscus in a microchannel , 2004 .

[15]  C. H. Bosanquet LV. On the flow of liquids into capillary tubes , 1923 .

[16]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[17]  P. Gennes Wetting: statics and dynamics , 1985 .

[18]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .