Handheld XRF for Art and Archaeology

[1]  Á. G. Torre,et al.  Rietveld Quantitative Analysis of Buen Retiro Porcelains , 2004 .

[2]  S. M. Tang,et al.  Quantitative XRF Analysis of Trace Barium in Porcelains by Source Excitation , 1985 .

[3]  D. Strivay,et al.  Is the external beam PIXE method suitable for determining ancient silver artifact fineness , 2000 .

[4]  N. Tennent,et al.  "The conservation of glass and ceramics : research, practice and training", pod. red. Normana H. Tennenta, wyd. JamesJ London 1999 : [recenzja] / Jerzy Kunicki-Goldfinger. , 1999 .

[5]  Aviva Burnstock,et al.  A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  Philippe Colomban,et al.  Lapis lazuli as unexpected blue pigment in Iranian Lâjvardina ceramics , 2003 .

[7]  McCarthy,et al.  An evaluation of inter-laboratory reproducibility for quantitative XRF of historic copper alloys PTISRC= METAL 2010, Proceedings of the Interim Meeting of the ICOM-CC Metal Working Group, Charleston, South Carolina 11-15 October 2010 , 2010 .

[8]  P. Lienemann,et al.  Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) , 1999 .

[9]  S. Weiner,et al.  Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel) , 2007 .

[10]  G. Pappalardo,et al.  Non-destructive characterization of Della Robbia sculptures at the Bargello museum in Florence by the combined use of PIXE and XRF portable systems , 2004 .

[11]  Philippe Colomban,et al.  Raman signature modification induced by copper nanoparticles in silicate glass , 2005 .

[12]  R. Larsen Microanalysis of Parchment , 2007 .

[13]  F. Albarède,et al.  Isotopic Ag–Cu–Pb record of silver circulation through 16th–18th century Spain , 2011, Proceedings of the National Academy of Sciences.

[14]  T. Culbert,et al.  X-ray fluorescence survey of tikal ceramics , 1987 .

[15]  Antonio Palucci,et al.  Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy , 2003 .

[16]  J. Miao,et al.  IDENTIFICATION AND DIFFERENTIATION OF OPAQUE CHINESE OVERGLAZE YELLOW ENAMELS BY RAMAN SPECTROSCOPY AND SUPPORTING TECHNIQUES , 2010 .

[17]  Elizabeth Crumley,et al.  Artists' Pigments. A Handbook of Their History and Characteristics, Vol. 1 , 1989 .

[18]  Robin J. H. Clark,et al.  Pigment identification on medieval manuscripts by Raman microscopy , 1995 .

[19]  Koen Janssens,et al.  Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. , 2010, Accounts of chemical research.

[20]  L. Bonizzoni,et al.  Comparison of three portable EDXRF spectrometers for pigment characterization , 2010 .

[21]  R. J. Bell,et al.  Preparation dependent properties of pressed pellets of montmorillonite in the far infrared. , 1987, Applied optics.

[22]  R. Jenkins,et al.  A practical guide for the preparation of specimens for x-ray fluorescence and x-ray diffraction analysis , 1998 .

[23]  P. Colomban,et al.  Characterization of pottery from Republic of Macedonia II. Raman and infrared analyses of glazed pottery finds from Skopsko Kale , 2010 .

[24]  Michelle P. Brown,et al.  Understanding illuminated manuscripts : a guide to technical terms , 1994 .

[25]  D. Clark,et al.  Corrosion of glass surfaces , 1980 .

[26]  Andrea Gorassini,et al.  The Degrading Action of Iron and Copper on Paper A FTIR-Deconvolution Analysis , 2002 .

[27]  Costanza Miliani,et al.  In situ non-invasive investigation on the painting techniques of early Meissen Stoneware. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  P. Rice Recent ceramic analysis: 2. Composition, production, and theory , 1996 .

[29]  M. Ynsa,et al.  Compositional analysis of XVIII century glazed, polychrome, layered porcelain by non-destructive micro α-PIXE , 2008 .

[30]  P. Colomban,et al.  Vietnamese (15th Century) Blue‐And‐White, Tam Thai and Lustre Porcelains/Stonewares: Glaze Composition and Decoration Techniques* , 2004 .

[31]  S. Akyuz,et al.  FT-IR and EDXRF analysis of wall paintings of ancient Ainos Hagia Sophia Church , 2009 .

[32]  P. Rice,et al.  Pottery Analysis: A Sourcebook , 1987 .

[33]  Carlo Fiorini,et al.  Works of art investigation with silicon drift detectors , 2000 .

[34]  M. L. Curri,et al.  The identification by Raman microscopy and X-ray diffraction of iron-oxide pigments and of the red pigments found on Italian pottery fragments , 1998 .

[35]  Y. Goren,et al.  Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF) , 2011 .

[36]  Nathan Stolow,et al.  On picture varnishes and their solvents , 1959 .

[37]  R. L. Feller,et al.  Artists' Pigments: A Handbook of Their History and Characteristics, Volume 2 , 1995 .

[38]  Philippe Colomban,et al.  On Site Raman Analysis of the earliest known Meissen Porcelain and Stoneware , 2006 .

[39]  Philippe Colomban Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics , 2003 .

[40]  L. Beck,et al.  Silver surface enrichment of silver–copper alloys: a limitation for the analysis of ancient silver coins by surface techniques , 2004 .

[41]  Robert E. Smith,et al.  The Type-Variety Concept as a Basis for the Analysis of Maya Pottery , 1960, American Antiquity.

[42]  Francesca Casadio,et al.  X‐ray fluorescence portable systems for the rapid assessment of photographic techniques in notable art collections: the Alfred Stieglitz Collection , 2010 .

[43]  Payson Sheets,et al.  Volcanism, Ecology and Culture: A Reassessment of the Volcán Ilopango TBJ Eruption in the Southern Maya Realm , 2001, Latin American Antiquity.

[44]  M. Maggetti,et al.  Antimonate opaque glaze colours from the faience manufacture of Le Bois d'Épense (19th century, Northeastern France)* , 2009 .

[45]  R. Tertian,et al.  Principles of Quantitative X-ray Fluorescence Analysis , 1982 .

[46]  Costanza Miliani,et al.  Raman scattering features of lead pyroantimonate compounds: implication for the non‐invasive identification of yellow pigments on ancient ceramics. Part II. In situ characterisation of Renaissance plates by portable micro‐Raman and XRF studies , 2011 .

[47]  Vladan Desnica,et al.  A LabVIEW‐controlled portable x‐ray fluorescence spectrometer for the analysis of art objects , 2006 .

[48]  G. Pappalardo,et al.  Quantitative non‐destructive determination of trace elements in archaeological pottery using a portable beam stability‐controlled XRF spectrometer , 2006 .

[49]  R. Peschar,et al.  Early Production Recipes for Lead Antimonate Yellow in Italian Art , 2005 .

[50]  E. Pernicka Trace element fingerprinting of ancient copper: A guide to technology or provenance? , 1999 .

[51]  Aurélie Tournié,et al.  Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide , 2006 .

[52]  Timothy Beach,et al.  In Search of an Ancient Maya Market , 2007, Latin American Antiquity.

[53]  E. Wells,et al.  Quantitative modeling of soil chemical data from inductively coupled plasma-optical emission spectroscopy reveals evidence for cooking and eating in ancient mesoamerican plazas , 2007 .

[54]  Manfred Schreiner,et al.  X-ray analysis of objects of art and archaeology , 2001 .

[55]  T. Culbert,et al.  Multiple Classifications: An Alternative Approach to the Investigation of Maya Ceramics , 2007, Latin American Antiquity.

[56]  H. Murrieta,et al.  Effect of irradiation dose, storage time and temperature on the ESR signal in irradiated oat, corn and wheat. , 1996, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[57]  Paolo Mazzoldi,et al.  Copper in glazes of Renaissance luster pottery: Nanoparticles, ions, and local environment , 2003 .

[58]  Vincent C. Pigott,et al.  Social approaches to an industrial past : the archaeology and anthropology of mining , 1998 .

[59]  L. A. Glinsman The application of X-ray fluorescence spectrometry to the study of museum objects , 2004 .

[60]  T. Rehren Rationales in Old World Base Glass Compositions , 2000 .

[61]  M. Martinón-Torres,et al.  A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects - A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London , 2010 .

[62]  M. Tite CERAMIC PRODUCTION, PROVENANCE AND USE : A REVIEW , 2008 .

[63]  L. Tang Determination of Iron and Copper in 18th and 19th Century Books by Flameless Atomic Absorption Spectroscopy , 1978 .

[64]  J. Striová,et al.  Prehistoric Anasazi ceramics studied by micro-Raman spectroscopy , 2006 .

[65]  C. M. Hoffman,et al.  USE OF NEUTRON ACTIVATION ANALYSIS FOR THE CHARACTERIZATION OF PAPER. , 1971 .

[66]  P. Walter,et al.  Characterization of illuminated manuscripts by laboratory-made portable XRD and micro-XRD systems , 2009, Analytical and bioanalytical chemistry.

[67]  P. Moioli,et al.  Analysis of art objects using a portable X-ray fluorescence spectrometer , 2000 .

[68]  G. Zachariadis,et al.  Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis , 2004 .

[69]  L. Goldberg A HISTORY OF PEST CONTROL MEASURES IN THE ANTHROPOLOGY COLLECTIONS, NATIONAL MUSEUM OF NATURAL HISTORY, SMITHSONIAN INSTITUTION , 1996 .

[70]  S. M. Tang,et al.  ENERGY‐DISPERSIVE X‐RAY FLUORESCENCE ANALYSIS OF CHINESE PORCELAINS USING Am‐241 , 1985 .

[71]  D. de Waal,et al.  Micro-Raman and portable Raman spectroscopic investigation of blue pigments in selected Delft plates (17-20th Century) , 2009 .

[72]  Nancy A. Fonicello Unique Problems with the Use of the Handheld XRF Spectrometer for Pesticide Surveys of Ethnographic Collections , 2007 .

[73]  P. Colomban,et al.  Non-Destructive Determination of the Structure and Composition of Glazes by Raman Spectroscopy , 2005 .

[74]  V. Serneels,et al.  PAUL‐LOUIS CYFFLÉ'S (1724–1806) TERRE DE LORRAINE: A TECHNOLOGICAL STUDY , 2010 .

[75]  A. Bouquillon,et al.  Quantitative elemental analysis of Della Robbia glazes with a portable XRF spectrometer and its comparison to PIXE methods , 2006 .

[76]  N. Ward,et al.  Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) , 2005 .

[77]  Aurelio Climent-Font,et al.  Color and Golden Shine of Silver Islamic Luster , 2010 .

[78]  Ancient Maya Pottery: Classification, Analysis, and Interpretation , 2013 .

[79]  M. Ferretti Fluorescence from the collimator in Si-PIN and Si-drift detectors: problems and solutions for the XRF analysis of archaeological and historical materials , 2004 .

[80]  Victoria,et al.  Bells & Mortars and Related Utensils: Catalogue of Italian Bronzes in the Victoria and Albert Museum , 2001 .

[81]  B. Kanngießer,et al.  Development of a nondestructive method for underglaze painted tiles—demonstrated by the analysis of Persian objects from the nineteenth century , 2009, Analytical and bioanalytical chemistry.

[82]  Koen Janssens A survey of the recent use of x-ray beam methods for non-destructive investigations in the cultural heritage sector , 2005 .

[83]  Robin J. H. Clark,et al.  Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD) , 1997 .

[84]  Z. Szökefalvi-nagy,et al.  Non-destructive XRF analysis of paintings , 2004 .

[85]  P. Colomban Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses , 2004, cond-mat/0701351.

[86]  James J. Aimers,et al.  What Maya Collapse? Terminal Classic Variation in the Maya Lowlands , 2007 .

[87]  L. Howie Ceramic production and consumption in the Maya lowlands during the classic to postclassic transition: a technological study of ceramics at Lamanai, Belize. , 2006 .

[88]  Philip J. Potts,et al.  Portable x-ray fluorescence spectrometry : capabilities for in situ analysis , 2008 .

[89]  M. L. Curri,et al.  RAMAN MICROSCOPY : THE IDENTIFICATION OF LAPIS LAZULI ON MEDIEVAL POTTERY FRAGMENTS FROM THE SOUTH OF ITALY , 1997 .

[90]  T. Culbert,et al.  Analytical measures of variability and group differences in x-ray fluorescence data , 1988 .

[91]  A. M. Pollard,et al.  Rethinking the quest for provenance , 1996, Antiquity.

[92]  P. Sirois,et al.  Pesticide Contamination: Working Together to Find a Common Solution , 2008 .

[93]  Demetrios Anglos,et al.  Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects , 2007, Analytical and bioanalytical chemistry.

[94]  Paul Craddock,et al.  Scientific investigation of copies, fakes and forgeries , 2009 .

[95]  Freddy C. Adams,et al.  Age determination of Chinese porcelain by X-ray fluorescence and multivariate analysis , 1994 .

[96]  Stefano Legnaioli,et al.  Study of foxing stains on paper by chemical methods, infrared spectroscopy, micro-X-ray fluorescence spectrometry and laser induced breakdown spectroscopy , 2002 .

[97]  Birgit Kanngießer,et al.  X-ray Fluorescence Analysis of Iron Gall Inks, Pencils and Coloured Crayons , 2005 .

[98]  R. Watling,et al.  Detecting art forgeries using LA-ICP-MS incorporating the in situ application of laser-based collection technology. , 2005, Talanta.

[99]  Robin J. H. Clark,et al.  RAMAN MICROSCOPY : APPLICATION TO THE IDENTIFICATION OF PIGMENTS ON MEDIEVAL MANUSCRIPTS , 1995 .

[100]  J. Spangenberg,et al.  Pigments and plasters discovered in the House of Diana (Cosa, Grosseto-Italy): an integrated study between Art History, Archaeology and scientific analyses , 2003 .

[101]  F. Agnoli,et al.  Analysis of pigments from Roman wall paintings found in Vicenza. , 2003, Talanta.

[102]  Damiano Monticelli,et al.  Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review. , 2009, Analytica chimica acta.

[103]  I. Iliopoulos,et al.  Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. , 2002, The Analyst.

[104]  D. Kennett,et al.  Oxygen Isotopic Analysis of Archaeological Shells to Detect Seasonal Use of Wetlands on the Southern Pacific Coast of Mexico , 1996 .

[105]  A. Slodczyk,et al.  Raman intensity: An important tool to study the structure and phase transitions of amorphous/crystalline materials , 2009 .

[106]  M. Bimson,et al.  A TECHNOLOGICAL STUDY OF ENGLISH PORCELAINS , 1991 .

[107]  J. Lohse Archaic Origins of the Lowland Maya , 2010, Latin American Antiquity.

[108]  J. Rowley Taxidermy and museum exhibition , 1926 .

[109]  Koen Janssens,et al.  Microscopic X-Ray Fluorescence Analysis , 2000 .

[110]  Dusan Stulik,et al.  A NEW SCIENTIFIC METHODOLOGY FOR PROVENANCING AND AUTHENTICATION OF 20 th CENTURY PHOTOGRAPHS: NONDESTRUCTIVE APPROACH , 2008 .

[111]  Anne Bouquillon,et al.  THE ‘DELLA ROBBIA BLUE’: A CASE STUDY FOR THE USE OF COBALT PIGMENTS IN CERAMICS DURING THE ITALIAN RENAISSANCE* , 2006 .

[112]  P. Colomban,et al.  Raman study of the microstructure, composition and processing of ancient Vietnamese (proto)porcelains and celadons (13-16th centuries) , 2000 .

[113]  Silvia Bruni,et al.  The joined use of n.i. spectroscopic analyses – FTIR, Raman, visible reflectance spectrometry and EDXRF – to study drawings and illuminated manuscripts , 2008 .

[114]  George L. Stout,et al.  Painting Materials: A Short Encyclopedia , 2011 .

[115]  B. Gratuze,et al.  De l'origine du cobalt : du verre à la céramique , 1996 .

[116]  N. Wood,et al.  Re‐dating of Chinese celadon shards excavated on Mapungubwe Hill, a 13th century Iron Age site in South Africa, using Raman spectroscopy, XRF and XRD , 2005 .

[117]  L. Beck,et al.  Silver surface enrichment controlled by simultaneous RBS for reliable PIXE analysis of ancient coins , 2008 .

[118]  Timothy D. Barrett,et al.  Composition and Condition of Naturally Aged Papers , 2008 .

[119]  O. Hahn Analyses of Iron Gall and Carbon Inks by Means of X-ray Fluorescence Analysis: A Non-Destructive Approach in the Field of Archaeometry and Conservation Science , 2010 .

[120]  M. Malainey A Consumer's Guide to Archaeological Science , 2011 .

[121]  P. Weis,et al.  Forensic investigation of brick stones using instrumental neutron activation analysis (INAA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF). , 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[122]  Martin Schönfeld,et al.  Was There a Western Inventor of Porcelain? , 1998 .

[123]  L. Burgio,et al.  Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[124]  M. Tite The production technology of Italian maiolica: a reassessment , 2009 .

[125]  P. Degryse,et al.  Evidence for the trade of Mesopotamian and Egyptian glass to Mycenaean Greece , 2009 .

[126]  I. Papageorgiou,et al.  MULTIVARIATE MIXTURE OF NORMALS WITH UNKNOWN NUMBER OF COMPONENTS: AN APPLICATION TO CLUSTER NEOLITHIC CERAMICS FROM AEGEAN AND ASIA MINOR USING PORTABLE XRF* , 2006 .

[127]  R Siddall,et al.  Pigment Compendium: A Dictionary of Historical Pigments , 2007 .

[128]  S. Akyuz,et al.  FT-IR and micro-Raman spectroscopic study of decorated potteries from VI and VII century BC, excavated in ancient Ainos – Turkey , 2007 .

[129]  M. Bimson,et al.  A TECHNOLOGICAL STUDY OF CHINESE PORCELAIN OF THE YUAN DYNASTY , 1984 .

[130]  M. Sendova,et al.  Micro-Raman spectroscopy characterization of della robbia glazes , 2007 .

[132]  B. Chappell,et al.  X-ray fluorescence spectrometry , 1977 .

[133]  M. Manso,et al.  Comparison of elemental content on modern and ancient papers by EDXRF , 2007 .

[134]  Jonathan A. Haws,et al.  Rapid, in-stride soil phosphate measurement in archaeological survey : a new method tested in Loudoun County, Virginia , 2007 .

[135]  Cathleen Baker From the Hand to the Machine: Nineteenth-Century American Paper and Mediums: Technologies, Materials, and Conservation , 2010 .

[136]  J. Zuo,et al.  Identification of the pigment in painted pottery from the Xishan site by Raman microscopy , 1999 .

[137]  Nancy K. Turner,et al.  XRF analysis of manuscript illuminations , 2013 .

[138]  K. N. Yu,et al.  Non-destructive analysis of Jingdezhen blue and white porcelains of the Ming dynasty using EDXRF , 1996 .

[139]  B. Voorhies,et al.  Coastal Collectors in the Holocene: The Chantuto People of Southwest Mexico , 2004 .

[140]  David B. George,et al.  Comparisons of ancient mortars and hydraulic cements through in situ analyses by portable X‐ray fluorescence spectrometry , 2010 .

[141]  H. Edwards,et al.  THE BOTTESFORD BLUE MYSTERY : A RAMAN SPECTROSCOPIC STUDY OF POST-MEDIAEVAL GLAZED TILES , 1999 .

[142]  Mohd Suhaimi Hamzah,et al.  INAA of ancient glass beads from Sungai Mas archaeological site, Bujang Valley, Malaysia , 2008 .

[143]  V. Kilikoglou,et al.  Group therapy in Crete : A comparison between analyses by NAA and thin section petrography of early Minoan pottery , 1999 .

[144]  Luc Moens,et al.  A decade of Raman spectroscopy in art and archaeology. , 2007, Chemical reviews.

[145]  Michael D. Glascock,et al.  Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú , 2007 .

[146]  V. Mazo‐Gray,et al.  X‐RAY FLUORESCENCE CHARACTERIZATION OF MING‐DYNASTY PORCELAIN RESCUED FROM A SPANISH SHIPWRECK , 1992 .

[147]  S. Orecchio,et al.  Chemical characterization of ancient potteries from Himera and Pestavecchia necropolis (Sicily, Italy) by Inductively Coupled Plasma–Optical Emission Spectrometry (ICP–OES) , 2011 .

[148]  D. D. Waal,et al.  Raman studies of the underglaze blue pigment on ceramic artefacts of the Ming dynasty and of unknown origins , 2007 .

[149]  Changsui Wang,et al.  Micro-structural characterization of red decorations of red and green color porcelain (Honglvcai) in China , 2009 .

[150]  P. Colomban,et al.  Identification and differentiation of ancient and modern European porcelains by Raman macro‐ and micro‐spectroscopy† , 2001 .

[151]  Nancy Odegaard,et al.  Old Poisons, New Problems: A Museum Resource for Managing Contaminated Cultural Materials , 2005 .

[152]  Christopher De Hamel,et al.  The British Library Guide to Manuscript Illumination: History and Techniques , 2001 .

[153]  A. Casoli,et al.  The analysis of archaeological glass by inductively coupled plasma optical emission spectroscopy , 1992 .

[154]  T. Trojek,et al.  Application of X-ray fluorescence in investigations of Bohemian historical manuscripts. , 2010, Applied Radiation and Isotopes.

[155]  M. Clarke The Art of All Colours: Mediaeval Recipe Books for Painters and Illuminators , 2002 .

[156]  John Aitchison,et al.  Log-ratios and geochemical discrimination of Scottish Dalradian limestones: a case study , 2006, Geological Society Special Publication.

[157]  Roy S. Berns,et al.  Pigment Identification of Artist Materials Via Multi-Spectral Imaging , 2001, Color Imaging Conference.

[158]  P. Grave Melting Moments: Modelling archaeological high temperature ceramic data , 2009 .

[159]  A. Kaminska,et al.  Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers , 2009 .

[160]  S. Weiner Microarchaeology: Beyond the Visible Archaeological Record , 2010 .

[161]  P. Goldberg,et al.  Micromorphology and context , 2010 .

[162]  J. B. I. Garrigós,et al.  Chemical Variability in Clays and Pottery from a Traditional Cooking Pot Production Village: Testing Assumptions in Pereruela* , 2003 .

[163]  E. Gliozzo,et al.  Integrating archaeology, archaeometry and geology : local production technology and imports at Paola (Cosenza, Southern Italy) , 2008 .

[164]  P. Colomban,et al.  Non‐destructive Raman study of the glazing technique in lustre potteries and faience (9–14th centuries): silver ions, nanoclusters, microstructure and processing , 2004 .

[165]  S. Bruni,et al.  Applications of a Compact Portable Raman Spectrometer for the Field Analysis of Pigments in Works of Art , 2007 .

[166]  Carol A. Redmount,et al.  Using portable energy dispersive X-ray fluorescence (EDXRF) analysis for on-site study of ceramic sherds at El Hibeh, Egypt , 2005 .

[167]  I. Freestone The Provenance of Ancient Glass through Compositional Analysis , 2004 .

[168]  Eugene P. Bertin,et al.  Principles and Practice of X-Ray Spectrometric Analysis , 1970 .

[169]  W. D. Keller,et al.  Bulk Densities of Selected Dried Natural and Fired Kaolin Clays , 1975 .

[170]  J. D. Robertson,et al.  Elemental analysis and characterization of ochre sources from Southern Arizona , 2008 .

[171]  W. Kingery,et al.  The eighteenth-century change in technology and style from the famille-verte palette to the famille-rose palette , 1986 .

[172]  S. Ruiz-Moreno,et al.  Experimental confirmation by Raman spectroscopy of a PbSnSb triple oxide yellow pigment in sixteenth-century Italian pottery , 2006 .

[173]  Marco Leona,et al.  Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering , 2009, Proceedings of the National Academy of Sciences.

[174]  Stanislaw Piorek,et al.  Field‐portable X‐ray fluorescence spectrometry: Past, present, and future , 1997 .

[175]  B. Gratuze,et al.  Application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient silver coins , 2007 .

[176]  M. Tite Pottery Production, Distribution, and Consumption—The Contribution of the Physical Sciences , 1999 .

[177]  M. Clarke,et al.  The analysis of medieval European manuscripts , 2001 .

[178]  A. Huber,et al.  The historical development of the thermoelectrically cooled X-ray detector and its impact on the portable and hand-held XRF industries (February 2009) , 2010 .

[179]  Alexander Fluegel,et al.  Global Model for Calculating Room‐Temperature Glass Density from the Composition , 2007 .

[180]  J. H. Hubbell,et al.  Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest , 1995 .

[181]  W. Ross Yates,et al.  A History of Metals in Colonial America , 1981 .

[182]  D. Strahan Uranium in glass, glazes and enamels: history, identification and handling , 2001 .

[183]  G. Zachariadis,et al.  Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics. , 2006, Talanta.

[184]  Marina Lasagni,et al.  Application of chemical and chemometric analytical techniques to the study of ancient ceramics from Dougga (Tunisia) , 2008 .

[185]  Roberto Cesareo,et al.  Portable systems for energy dispersive X-ray fluorescence analysis of works of art , 2008 .

[186]  R. Clemens,et al.  Introduction to Manuscript Studies , 2008 .

[187]  A. Sjöberg Phosphate Analysis of Anthropic Soils , 1976 .

[188]  C. Shahani,et al.  The influence of copper and iron on the permanence of paper , 1986 .

[189]  A. Shugar,et al.  Formation and composition of glass as a function of firing temperature , 2002 .

[190]  R. O. Müller Spectrochemical Analysis by X-Ray Fluorescence , 1972 .

[191]  D. Rhodes Clay and Glazes for the Potter , 1957 .

[192]  R. L. Feller,et al.  Artists' Pigments: A Handbook of Their History and Characteristics, Volume 2 , 1995 .

[193]  Burkhard Beckhoff,et al.  Characterization of iron‐gall inks in historical manuscripts and music compositions using x‐ray fluorescence spectrometry , 2004 .

[194]  J. Hoste,et al.  Multielement thin film standards for XRF analysis , 1980 .

[195]  Lucia Burgio,et al.  Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings , 2010, Proceedings of the National Academy of Sciences.

[196]  P. Sarrazin,et al.  A PORTABLE NON-INVASIVE XRD-XRF INSTRUMENT FOR THE STUDY OF ART OBJECTS. , 2009 .

[197]  C. Ortloff,et al.  The Urban Water Supply and Distribution System of the Ionian City of Ephesos in the Roman Imperial Period , 2001 .

[198]  J. Winefordner,et al.  Laser-induced plasma spectroscopy for characterization of archaeological material , 2002 .

[199]  Quanyu Wang,et al.  Casting Experiments and Microstructure of Archaeologically Relevant Bronzes . With accompanying CD , 2005 .

[200]  Matija Strlič,et al.  Historical iron gall ink containing documents — Properties affecting their condition , 2006 .

[201]  R. Eppler Glazes and glass coatings , 2000 .

[202]  J. Aitchison,et al.  Logratio Analysis and Compositional Distance , 2000 .

[203]  Y. Lahaye,et al.  Roman lead mining in Germany: its origin and development through time deduced from lead isotope provenance studies , 2007 .

[204]  A. Cuevas,et al.  Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry , 2011 .

[205]  R. Speakman,et al.  Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest , 2011 .

[206]  Ron Jenkins,et al.  Quantitative X-Ray Spectrometry , 1981 .

[207]  P. Colomban,et al.  Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings , 2001 .

[208]  Frank Asaro,et al.  Determining pottery provenance : Application of a new high-precision X-ray fluorescence method and comparison with instrumental neutron activation analysis , 1999 .

[209]  R. Wagstaffe,et al.  The preservation of natural history specimens , 1955 .

[210]  P. Colomban,et al.  Reliability of Raman micro-spectroscopy in analysing ancient ceramics: the case of ancient Vietnamese porcelain and celadon glazes , 2002 .

[211]  R. F. Tylecote,et al.  A History of Metallurgy , 1976 .

[212]  Rustum Roy,et al.  Materials Research Society , 1984 .

[213]  D. Thompson,,et al.  The materials and techniques of medieval painting , 1956 .

[214]  Erica Aquilia,et al.  Potentiality of non-destructive XRF analysis for the determination of Corinthian B amphorae provenance , 2011 .

[215]  J. Aimers Cultural Change on a Temporal and Spatial Frontier: Ceramics of the Terminal Classic to Postclassic transition in the Upper Belize River Valley , 2005 .

[216]  J Wu,et al.  EDXRF studies on Chinese Yue ware , 2002 .

[217]  Uwe Bergmann,et al.  Archimedes Brought to Light , 2007 .

[218]  C. Ricci,et al.  The Perugino's palette: integration of an extendedin situ XRF study by Raman spectroscopy , 2004 .

[219]  L. Dussubieux,et al.  LA-ICP-MS analysis of African glass beads: Laboratory inter-comparison with an emphasis on the impact of corrosion on data interpretation , 2009 .

[220]  Héctor Jorge Sánchez,et al.  Authentication of postal pieces by spatially resolved x-ray fluorescence analysis , 2006 .