Efficient algorithms for globally optimal trajectories
暂无分享,去创建一个
[1] Michael Athans,et al. Optimal Control , 1966 .
[2] Robert B. Dial,et al. Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.
[3] P. Lions,et al. Viscosity solutions of Hamilton-Jacobi equations , 1983 .
[4] I. Dolcetta. On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .
[5] David M. Keirsey,et al. Planning Strategic Paths Through Variable Terrain Data , 1984, Other Conferences.
[6] H. Ishii,et al. Approximate solutions of the bellman equation of deterministic control theory , 1984 .
[7] R. González,et al. On Deterministic Control Problems: An Approximation Procedure for the Optimal Cost I. The Stationary Problem , 1985 .
[8] P. Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .
[9] M. Falcone. A numerical approach to the infinite horizon problem of deterministic control theory , 1987 .
[10] M. Falcone,et al. Discrete Dynamic Programming and Viscosity Solutions of the Bellman Equation , 1989 .
[11] M. Falcone,et al. An approximation scheme for the minimum time function , 1990 .
[12] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[13] John N. Tsitsiklis,et al. An Analysis of Stochastic Shortest Path Problems , 1991, Math. Oper. Res..
[14] Joseph S. B. Mitchell,et al. The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.