Applied Digital Signal Processing: Theory and Practice

Master the basic concepts and methodologies of digital signal processing with this systematic introduction, without the need for an extensive mathematical background. The authors lead the reader through the fundamental mathematical principles underlying the operation of key signal processing techniques, providing simple arguments and cases rather than detailed general proofs. Coverage of practical implementation, discussion of the limitations of particular methods and plentiful MATLAB illustrations allow readers to better connect theory and practice. A focus on algorithms that are of theoretical importance or useful in real-world applications ensures that students cover material relevant to engineering practice, and equips students and practitioners alike with the basic principles necessary to apply DSP techniques to a variety of applications. Chapters include worked examples, problems and computer experiments, helping students to absorb the material they have just read. Lecture slides for all figures and solutions to the numerous problems are available to instructors.

[1]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[2]  D. Kammler A First Course in Fourier Analysis , 2000 .

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Fred Mintzer,et al.  Filters for distortion-free two-band multirate filter banks , 1985, IEEE Trans. Acoust. Speech Signal Process..

[6]  E. Cheney Introduction to approximation theory , 1966 .

[7]  C. Sidney Burrus,et al.  The quick Fourier transform: an FFT based on symmetries , 1998, IEEE Trans. Signal Process..

[8]  G. Zeoli,et al.  Quantization and Saturation Noise Due to Analog-to-Digital Conversion , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[10]  Dennis G. Zill,et al.  A First Course in Complex Analysis With Applications , 2006 .

[11]  L. Rabiner,et al.  An approach to the approximation problem for nonrecursive digital filters , 1970 .

[12]  R. Yavne,et al.  An economical method for calculating the discrete Fourier transform , 1899, AFIPS Fall Joint Computing Conference.

[13]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[14]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[15]  David F. Hoeschele,et al.  Analog-to-digital, digital-to-analog conversion techniques , 1968 .

[16]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[17]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[18]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[19]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[20]  C. Rader Discrete Fourier transforms when the number of data samples is prime , 1968 .

[21]  L. Rabiner,et al.  Some comparisons between fir and iir digital filters , 1974 .

[22]  K. Mondal,et al.  Analog and digital filters: Design and realization , 1980, Proceedings of the IEEE.

[23]  W. R. Bennett,et al.  Spectra of quantized signals , 1948, Bell Syst. Tech. J..

[24]  John W. Woods,et al.  Multidimensional Signal, Image and Video Processing and Coding [Book Reviews] , 2007, IEEE Signal Processing Magazine.

[25]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[26]  Richard W. Hamming,et al.  Numerical Methods for Scientists and Engineers , 1962 .

[27]  Michael Rice,et al.  Digital Communications: A Discrete-Time Approach , 2008 .

[28]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .

[29]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[30]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[31]  S. Mitra,et al.  Interpolated finite impulse response filters , 1984 .

[32]  Lee D. Davisson,et al.  An Introduction To Statistical Signal Processing , 2004 .

[33]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[34]  M. Carter Computer graphics: Principles and practice , 1997 .

[35]  F. Mintzer,et al.  On half-band, third-band, and Nth-band FIR filters and their design , 1982 .

[36]  Martin Vetterli,et al.  Fast Fourier transforms: a tutorial review and a state of the art , 1990 .

[37]  Sen M. Kuo,et al.  Real-time digital signal processing , 2001 .

[38]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[39]  Steven G. Johnson,et al.  A Modified Split-Radix FFT With Fewer Arithmetic Operations , 2007, IEEE Transactions on Signal Processing.

[40]  Anatol I. Zverev,et al.  Handbook of Filter Synthesis , 1967 .

[41]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. Schwarz,et al.  FFT implementation on DSP-chips-theory and practice , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[43]  W. Cauer New Theory and Design of Wave Filters , 1932 .

[44]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[45]  Pierre Duhamel,et al.  Implementation of "Split-radix" FFT algorithms for complex, real, and real-symmetric data , 1986, IEEE Trans. Acoust. Speech Signal Process..

[46]  Rodney G. Vaughan,et al.  The theory of bandpass sampling , 1991, IEEE Trans. Signal Process..

[47]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[48]  Boaz Porat,et al.  A course in digital signal processing , 1996 .

[49]  L. Rabiner,et al.  FIR digital filter design techniques using weighted Chebyshev approximation , 1975, Proceedings of the IEEE.

[50]  James A. Moorer,et al.  About This Reverberation Business , 1978 .

[51]  James C. Schatzman,et al.  Accuracy of the Discrete Fourier Transform and the Fast Fourier Transform , 1996, SIAM J. Sci. Comput..

[52]  Arun N. Netravali,et al.  Reconstruction filters in computer-graphics , 1988, SIGGRAPH.

[53]  Udo Zoelzer Digital Audio Signal Processing , 2008 .

[54]  L. Rabiner,et al.  A computer program for designing optimum FIR linear phase digital filters , 1973 .

[55]  John G. Proakis,et al.  Digital Signal Processing Using MATLAB , 1999 .

[56]  P. Lewis,et al.  The finite Fourier transform , 1969 .

[57]  A. Papoulis Signal Analysis , 1977 .

[58]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[59]  Robert M. Gray,et al.  Quantization noise spectra , 1990, IEEE Trans. Inf. Theory.

[60]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[61]  L. Rabiner,et al.  Analysis of quantization errors in the direct form for finite impulse response digital filters , 1973 .

[62]  Peter D. Welch,et al.  Fast Fourier Transform , 2011, Starting Digital Signal Processing in Telecommunication Engineering.

[63]  Truong Q. Nguyen,et al.  A 'trick' for the design of FIR half-band filters , 1987 .

[64]  J. McClellan,et al.  A personal history of the Parks-McClellan algorithm , 2005, IEEE Signal Processing Magazine.

[65]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[66]  Max W. Hauser,et al.  Principles of oversampling A/D conversion , 1991 .

[67]  Jeffrey J. Rodriguez An improved FFT digit-reversal algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[68]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[69]  T. W. Parks,et al.  Digital Filter Design , 1987 .

[70]  L. Jackson Digital filters and signal processing , 1985 .

[71]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.

[72]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[73]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[74]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[75]  Alan J. Coulson,et al.  A generalization of nonuniform bandpass sampling , 1995, IEEE Trans. Signal Process..

[76]  Rulph Chassaing,et al.  Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK , 2008 .

[77]  Kenneth Steiglitz,et al.  METEOR: a constraint-based FIR filter design program , 1992, IEEE Trans. Signal Process..

[78]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[79]  F. Itakura,et al.  A statistical method for estimation of speech spectral density and formant frequencies , 1970 .

[80]  Leland B. Jackson,et al.  On the interaction of roundoff noise and dynamic range in digital filters , 1970, Bell Syst. Tech. J..

[81]  Ramesh A. Gopinath,et al.  Least squared error FIR filter design with transition bands , 1992, IEEE Trans. Signal Process..

[82]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[83]  Anthony G. Constantinides,et al.  Spectral Transformations for Digital Filters , 1970 .

[84]  R. Blahut Fast Algorithms for Signal Processing , 2010 .

[85]  J. Makhoul Stable and efficient lattice methods for linear prediction , 1977 .

[86]  David L. Neuhoff,et al.  The validity of the additive noise model for uniform scalar quantizers , 2005, IEEE Transactions on Information Theory.

[87]  Marina Bosi,et al.  Introduction to Digital Audio Coding and Standards , 2004, J. Electronic Imaging.

[88]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[89]  H. W. Bode,et al.  A Simplified Derivation of Linear Least Square Smoothing and Prediction Theory , 1950, Proceedings of the IRE.

[90]  B. P. Lathi Linear systems and signals , 1992 .

[91]  L. Rabiner,et al.  A digital signal processing approach to interpolation , 1973 .

[92]  Mark A. Clements,et al.  On causal linear phase IIR digital filters , 1989, IEEE Trans. Acoust. Speech Signal Process..

[93]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[94]  L. Rabiner Approximation methods for electronic filter design , 1976 .

[95]  A. Leon-Garcia,et al.  Probability, statistics, and random processes for electrical engineering , 2008 .

[96]  P. Welch A fixed-point fast Fourier transform error analysis , 1969 .

[97]  A. Sripad,et al.  A necessary and sufficient condition for quantization errors to be uniform and white , 1977 .

[98]  R. Bracewell The Fourier Transform and Its Applications , 1966 .

[99]  W. Mathis,et al.  Life and Work of Wilhelm Cauer (1900 - 1945) , 2000 .

[100]  Chia-Chuan Hsiao Polyphase filter matrix for rational sampling rate conversions , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[101]  Ronald W. Schafer,et al.  Some considerations in the design of multiband finite-impulse-response digital filters , 1974 .

[102]  Sheldon M. Ross,et al.  Introduction to Probability and Statistics for Engineers and Scientists , 1987 .

[103]  James W. Cooley How the FFT gained acceptance , 1992 .

[104]  W. Davenport Probability and random processes , 1970 .

[105]  L. Jackson Roundoff-noise analysis for fixed-point digital filters realized in cascade or parallel form , 1970 .

[106]  Alan H. Karp Bit Reversal on Uniprocessors , 1996, SIAM Rev..

[107]  W. Root,et al.  An introduction to the theory of random signals and noise , 1958 .

[108]  C. Sidney Burrus,et al.  On computing the split-radix FFT , 1986, IEEE Trans. Acoust. Speech Signal Process..

[109]  M. Powell,et al.  Approximation theory and methods , 1984 .

[110]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[111]  E. A. S Guillemin,et al.  Synthesis of Passive Networks , 1957 .

[112]  Thomas W. Parks,et al.  New results in the design of digital interpolators" ieee trans , 1975 .

[113]  L.R. Rabiner,et al.  Interpolation and decimation of digital signals—A tutorial review , 1981, Proceedings of the IEEE.

[114]  Li Tan,et al.  6 – Finite impulse response filter design , 2013 .

[115]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[116]  Ronald W. Schafer,et al.  Theory and Applications of Digital Speech Processing , 2010 .

[117]  James D. Johnston,et al.  A filter family designed for use in quadrature mirror filter banks , 1980, ICASSP.

[118]  A. Oppenheim,et al.  Effects of finite register length in digital filtering and the fast Fourier transform , 1972 .

[119]  Franz Franchetti,et al.  Discrete fourier transform on multicore , 2009, IEEE Signal Processing Magazine.

[120]  Kcstcr The Data Conversion Handbook , 2007 .

[121]  Manfred R. Schroeder,et al.  -Colorless- Artificial Reverberation , 1960 .

[122]  Allen Gersho,et al.  Principles of quantization , 1978 .

[123]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[124]  William H. Press,et al.  Numerical recipes , 1990 .

[125]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[126]  Mark A. Richards,et al.  Fundamentals of Radar Signal Processing , 2005 .

[127]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[128]  Kurt D. Bollacker,et al.  Avoiding a Digital Dark Age , 2010 .

[129]  D. Linden A Discussion of Sampling Theorems , 1959, Proceedings of the IRE.

[130]  R. Singleton An algorithm for computing the mixed radix fast Fourier transform , 1969 .

[131]  W. C. Miller,et al.  Improved approach to interpolation using the FFT , 1992 .

[132]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[133]  J. Woods,et al.  Probability and Random Processes with Applications to Signal Processing , 2001 .

[134]  Walter Fischer,et al.  Digital Video and Audio Broadcasting Technology: A Practical Engineering Guide , 2008 .

[135]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[136]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[137]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[138]  F. Richard Moore,et al.  Elements of computer music , 1990 .

[139]  Duane C. Hanselman,et al.  Mastering MATLAB , 2004 .

[140]  D. Shpak,et al.  A generalized Remez method for the design of FIR digital filters , 1990 .

[141]  P. P. Vaidyanathan,et al.  Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial , 1990, Proc. IEEE.

[142]  J. McClellan,et al.  A unified approach to the design of optimum FIR linear-phase digital filters , 1973 .

[143]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[144]  Charles M. Rader,et al.  Digital processing of signals , 1983 .

[145]  Olivier Pironneau,et al.  Introduction to Scientific Computing , 1998 .

[146]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[147]  C. Weinstein Roundoff noise in floating point fast Fourier transform computation , 1969 .

[148]  L. Trefethen,et al.  Barycentric-Remez algorithms for best polynomial approximation in the chebfun system , 2009 .

[149]  David M. W. Evans An improved digit-reversal permutation algorithm for the fast Fourier and Hartley transforms , 1987, IEEE Trans. Acoust. Speech Signal Process..

[150]  L. Rabiner,et al.  The chirp z-transform algorithm , 1969 .

[151]  C. Burrus,et al.  DFT/FFT and Convolution Algorithms: Theory and Implementation , 1991 .

[152]  P. Lewis,et al.  Historical notes on the fast Fourier transform , 1967, IEEE Transactions on Audio and Electroacoustics.

[153]  G. Goertzel An Algorithm for the Evaluation of Finite Trigonometric Series , 1958 .

[154]  C. Sidney Burrus,et al.  Constrained least square design of FIR filters without specified transition bands , 1996, IEEE Trans. Signal Process..