Biological characterization of expression quantitative trait loci (eQTLs) showing tissue-specific opposite directional effects

[1]  A. Chen-Plotkin,et al.  The Post-GWAS Era: From Association to Function. , 2018, American journal of human genetics.

[2]  F. Grassmann,et al.  A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver , 2018, Scientific Reports.

[3]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[4]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[5]  Abhijeet R. Sonawane,et al.  Exploring regulation in tissues with eQTL networks , 2017, Proceedings of the National Academy of Sciences.

[6]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[7]  Y. Kamatani,et al.  Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis , 2017, Nature Genetics.

[8]  Robert Plomin,et al.  Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence , 2017, Nature Genetics.

[9]  C. Guda,et al.  Global gene expression profiling of healthy human brain and its application in studying neurological disorders , 2017, Scientific Reports.

[10]  Victor O. Leshyk,et al.  The 4D nucleome project , 2017, Nature.

[11]  M. Stephens,et al.  Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions , 2016, Nature Genetics.

[12]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[13]  T. Berg,et al.  MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C , 2016, Nature Communications.

[14]  O. Delaneau,et al.  Estimating the causal tissues for complex traits and diseases , 2016, Nature Genetics.

[15]  Radu Dobrin,et al.  Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations , 2016, Genome Biology.

[16]  Timothy E. Reddy,et al.  Genomic approaches for understanding the genetics of complex disease , 2015, Genome research.

[17]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[18]  Murray Grossman,et al.  Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy , 2015, Nature Communications.

[19]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[20]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[21]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[22]  Xiaoquan Wen,et al.  Cross-Population Joint Analysis of eQTLs: Fine Mapping and Functional Annotation , 2014, bioRxiv.

[23]  Emmanouil T. Dermitzakis,et al.  Putative cis-regulatory drivers in colorectal cancer , 2014, Nature.

[24]  Andrew D. Johnson,et al.  Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs , 2014, BMC Genomics.

[25]  Morgan C. Giddings,et al.  Defining functional DNA elements in the human genome , 2014, Proceedings of the National Academy of Sciences.

[26]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[27]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[28]  Christian Gieger,et al.  Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood , 2012, European Journal of Human Genetics.

[29]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[30]  Andrew J. Lees,et al.  Identification of common variants influencing risk of the tauopathy Progressive Supranuclear Palsy , 2011, Nature Genetics.

[31]  Mohamad Saad,et al.  Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies , 2011, The Lancet.

[32]  Sonja W. Scholz,et al.  Genome-Wide Association Study reveals genetic risk underlying Parkinson’s disease , 2009, Nature Genetics.

[33]  M. Grompe,et al.  Generation and Regeneration of Cells of the Liver and Pancreas , 2008, Science.

[34]  E. Eichler,et al.  Regional patterns of gene expression in human and chimpanzee brains. , 2004, Genome research.

[35]  R. Ophoff,et al.  University of Groningen Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression , 2017 .

[36]  T. Berg,et al.  MBOAT 7 rs 641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C , 2016 .