Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences

[1]  Sander Nieuwenhuis,et al.  Noradrenergic and Cholinergic Modulation of Belief Updating , 2018, Journal of Cognitive Neuroscience.

[2]  M. Chait,et al.  Enhanced deviant responses in patterned relative to random sound sequences , 2017, Cortex.

[3]  Michael C. Avery,et al.  Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments , 2017, Front. Neural Circuits.

[4]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[5]  Jonathon R. Howlett,et al.  The effect of single-dose methylphenidate on the rate of error-driven learning in healthy males: a randomized controlled trial , 2017, Psychopharmacology.

[6]  Karl J. Friston,et al.  The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream , 2017, The Journal of Neuroscience.

[7]  Byron C. Jaeger,et al.  An R2 statistic for fixed effects in the generalized linear mixed model , 2017 .

[8]  J. Gold,et al.  Arousal-related adjustments of perceptual biases optimize perception in dynamic environments , 2017, Nature Human Behaviour.

[9]  Maria V. Sanchez-Vives,et al.  Lateral orbitofrontal cortex anticipates choices and integrates prior with current information , 2017, Nature Communications.

[10]  Niels A. Kloosterman,et al.  Dynamic modulation of decision biases by brainstem arousal systems , 2017, eLife.

[11]  Anne E. Urai,et al.  Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias , 2017, Nature Communications.

[12]  Karl J. Friston,et al.  Is predictability salient? A study of attentional capture by auditory patterns , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  D. McCormick,et al.  Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex , 2016, Nature Communications.

[14]  P. Dayan,et al.  Pharmacological Fingerprints of Contextual Uncertainty , 2016, PLoS biology.

[15]  Matthew R. Nassar,et al.  Catecholaminergic Regulation of Learning Rate in a Dynamic Environment , 2016, PLoS Comput. Biol..

[16]  M. Chait,et al.  Detecting and representing predictable structure during auditory scene analysis , 2016, eLife.

[17]  S. Furukawa,et al.  Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention , 2016, Front. Neurosci..

[18]  Karl J. Friston,et al.  Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns , 2016, Proceedings of the National Academy of Sciences.

[19]  Vincent D Costa,et al.  More than Meets the Eye: the Relationship between Pupil Size and Locus Coeruleus Activity , 2016, Neuron.

[20]  J. Gold,et al.  Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex , 2016, Neuron.

[21]  Douglas P Munoz,et al.  A circuit for pupil orienting responses: implications for cognitive modulation of pupil size , 2015, Current Opinion in Neurobiology.

[22]  Ingrid S. Johnsrude,et al.  The eye as a window to the listening brain: Neural correlates of pupil size as a measure of cognitive listening load , 2014, NeuroImage.

[23]  Erich Schröger,et al.  Microsaccadic Responses Indicate Fast Categorization of Sounds: A Novel Approach to Study Auditory Cognition , 2014, The Journal of Neuroscience.

[24]  Carolyn E. Jones,et al.  Gradual extinction prevents the return of fear: implications for the discovery of state , 2013, Front. Behav. Neurosci..

[25]  Peter Bossaerts,et al.  The Neural Representation of Unexpected Uncertainty during Value-Based Decision Making , 2013, Neuron.

[26]  Jill X. O'Reilly,et al.  Making predictions in a changing world—inference, uncertainty, and learning , 2013, Front. Neurosci..

[27]  Shinichi Nakagawa,et al.  A general and simple method for obtaining R2 from generalized linear mixed‐effects models , 2013 .

[28]  Mattias P. Karlsson,et al.  Network Resets in Medial Prefrontal Cortex Mark the Onset of Behavioral Uncertainty , 2012, Science.

[29]  S. Sara,et al.  Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal , 2012, Neuron.

[30]  Amy R. Bland,et al.  Different Varieties of Uncertainty in Human Decision-Making , 2012, Front. Neurosci..

[31]  Robert C. Wilson,et al.  Rational regulation of learning dynamics by pupil–linked arousal systems , 2012, Nature Neuroscience.

[32]  W. Einhäuser,et al.  Pupil Dilation Signals Surprise: Evidence for Noradrenaline’s Role in Decision Making , 2011, Front. Neurosci..

[33]  Berrin Maraşligil,et al.  İnsanlarda Yenilik N2 Yanıtı Hedef Uyaranların Zamansal Sınıflamasını Yansıtır , 2011 .

[34]  Sander Nieuwenhuis,et al.  Pupil Diameter Predicts Changes in the Exploration–Exploitation Trade-off: Evidence for the Adaptive Gain Theory , 2011, Journal of Cognitive Neuroscience.

[35]  S. Nieuwenhuis,et al.  The anatomical and functional relationship between the P3 and autonomic components of the orienting response. , 2011, Psychophysiology.

[36]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[37]  Marcia K. Johnson,et al.  Implicit Perceptual Anticipation Triggered by Statistical Learning , 2010, The Journal of Neuroscience.

[38]  Christof Koch,et al.  Fully Formatted Pdf and Full Text (html) Versions Will Be Made Available Soon. Pupil Dilation Betrays the Timing of Decisions , 2022 .

[39]  E. Erdfelder,et al.  Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses , 2009, Behavior research methods.

[40]  E. Szabadi,et al.  Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans , 2008, Current neuropharmacology.

[41]  E. Szabadi,et al.  Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part I: Principles of Functional Organisation , 2008, Current neuropharmacology.

[42]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[43]  Ralf Engbert,et al.  Toward a model of microsaccade generation: the case of microsaccadic inhibition. , 2008, Journal of vision.

[44]  W. Richards,et al.  Perception as Bayesian Inference , 2008 .

[45]  Karl J. Friston,et al.  Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action , 2008, Current Biology.

[46]  H. Eichenbaum,et al.  Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting , 2008, Neuroscience.

[47]  Timothy E. J. Behrens,et al.  Choice, uncertainty and value in prefrontal and cingulate cortex , 2008, Nature Neuroscience.

[48]  Richard M. Warren,et al.  Auditory Perception: Index , 2008 .

[49]  Richard M. Warren,et al.  Auditory perception : an analysis and synthesis , 2008 .

[50]  R. Näätänen,et al.  The mismatch negativity (MMN) in basic research of central auditory processing: A review , 2007, Clinical Neurophysiology.

[51]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[52]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[53]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[54]  Angela J. Yu,et al.  Phasic norepinephrine: A neural interrupt signal for unexpected events , 2006, Network.

[55]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[56]  Rajesh P. N. Rao,et al.  Bayesian inference and attentional modulation in the visual cortex , 2005, Neuroreport.

[57]  S. Sara,et al.  Network reset: a simplified overarching theory of locus coeruleus noradrenaline function , 2005, Trends in Neurosciences.

[58]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[59]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[60]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  S. Yasuda,et al.  Separation process of two-phase fluids , 2005, J. Vis..

[62]  János Horváth,et al.  How the human auditory system treats repetition amongst change , 2004, Neuroscience Letters.

[63]  S. Sara,et al.  Reward expectation, orientation of attention and locus coeruleus‐medial frontal cortex interplay during learning , 2004, The European journal of neuroscience.

[64]  T. Rosburg Effects of tone repetition on auditory evoked neuromagnetic fields , 2004, Clinical Neurophysiology.

[65]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[66]  E. Schröger,et al.  Activation of the auditory pre-attentive change detection system by tone repetitions with fast stimulation rate. , 2001, Brain research. Cognitive brain research.

[67]  G. Aston-Jones,et al.  Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task , 1997, Neuroscience.

[68]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[69]  S. Sara,et al.  Response to Novelty and its Rapid Habituation in Locus Coeruleus Neurons of the Freely Exploring Rat , 1995, The European journal of neuroscience.

[70]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[71]  M. Segal,et al.  Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. , 1991, Progress in brain research.

[72]  S. Sara,et al.  Activation of the noradrenergic system facilitates an attentional shift in the rat , 1990, Behavioural Brain Research.