Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica

[1]  A. Lapkin,et al.  High temperature sequestration of CO2 using lithium zirconates , 2009 .

[2]  Angeliki A. Lemonidou,et al.  Parametric Study of the CaO−Ca12Al14O33 Synthesis with Respect to High CO2 Sorption Capacity and Stability on Multicycle Operation , 2008 .

[3]  Vasilije Manovic,et al.  Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles , 2008 .

[4]  Angeliki A. Lemonidou,et al.  Development of new CaO based sorbent materials for CO2 removal at high temperature , 2008 .

[5]  K. Yi,et al.  Properties of a Nano CaO/Al2O3 CO2 Sorbent , 2008 .

[6]  H. Pfeiffer,et al.  Kinetic and Reaction Mechanism of CO2 Sorption on Li4SiO4: Study of the Particle Size Effect , 2007 .

[7]  Vasilije Manovic,et al.  Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. , 2007, Environmental science & technology.

[8]  P. Smirniotis,et al.  Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures , 2006 .

[9]  Yu-yu Huang,et al.  Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation−Calcination Cycles for a New Ca-Based CO2 Sorbent , 2006 .

[10]  K. Ariga,et al.  Preparation and catalytic performances of ultralarge-pore TiSBA-15 mesoporous molecular sieves with very high Ti content. , 2006, The journal of physical chemistry. B.

[11]  J. Carlos Abanades,et al.  Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2 , 2005 .

[12]  Ningsheng Cai,et al.  Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent , 2005 .

[13]  P. Smirniotis,et al.  Parametric Study of Cs/CaO Sorbents with Respect to Simulated Flue Gas at High Temperatures , 2005 .

[14]  J. Carlos Abanades,et al.  Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles , 2005 .

[15]  Juan Carlos Abanades,et al.  Enhancement of CaO for CO2 capture in an FBC environment , 2003 .

[16]  Y. S. Lin,et al.  Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate , 2003 .

[17]  T. Wheelock,et al.  A Plausible Model for the Sulfidation of a Calcium-Based Core-in-Shell Sorbent , 2003 .

[18]  J. C. Abanades,et al.  Conversion Limits in the Reaction of CO2 with Lime , 2003 .

[19]  L. Fan,et al.  Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas , 2002 .

[20]  Masahiro Kato,et al.  Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations , 2002 .

[21]  M. Aihara,et al.  Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction , 2001 .

[22]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[23]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[24]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[25]  J. H. de Boer,et al.  Studies on pore systems in catalysts: VI. The universal t curve , 1965 .