The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation

We prove the global existence of non-negative variational solutions to the “drift diffusion” evolution equation $${{\partial_t} u+ div \left(u{\mathrm{D}}\left(2 \frac{\Delta \sqrt u}{\sqrt u}-{f}\right)\right)=0}$$ under variational boundary condition. Despite the lack of a maximum principle for fourth order equations, non-negative solutions can be obtained as a limit of a variational approximation scheme by exploiting the particular structure of this equation, which is the gradient flow of the (perturbed) Fisher information functional $${\fancyscript F^f(u):=\frac 12\int \left|{\mathrm{D}} \log u\right|^2 {u} dx+\int fu dx}$$ with respect to the Kantorovich–Rubinstein–Wasserstein distance between probability measures. We also study long-time behavior of the solutions, proving their exponential decay to the equilibrium state g = e−V characterized by $${-\Delta V+\frac12 \left|{\mathrm{D}} V\right|^2=f,\quad \int {\rm e}^{-V} dx=\int u_{0}dx,}$$ when the potential V is uniformly convex: in this case the functional $${\fancyscript F^f}$$ coincides with the relative Fisher information$${\fancyscript F^f(u)=\frac12\fancyscript I(u|g)= \int \left|{\mathrm{D}}\log(u/g)\right|^2u dx}$$.

[1]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[2]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[3]  J. Serrin,et al.  Sublinear functions of measures and variational integrals , 1964 .

[4]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[5]  H. McKean Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .

[6]  H. Brezis On a characterization of flow-invariant sets , 1970 .

[7]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[8]  M. Émery,et al.  Inégalités de Sobolev pour un semi-groupe symétrique , 1985 .

[9]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[10]  M. Knott,et al.  Note on the optimal transportation of distributions , 1987 .

[11]  Giuseppe Buttazzo,et al.  Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .

[12]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[13]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[14]  Lebowitz,et al.  Fluctuations of a stationary nonequilibrium interface. , 1991, Physical review letters.

[15]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[16]  Pavel Bleher,et al.  Existence and positivity of solutions of a fourth‐order nonlinear PDE describing interface fluctuations , 1994 .

[17]  Pierre-Louis Lions,et al.  A Strengthened Central Limit Theorem for Smooth Densities , 1995 .

[18]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[19]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[20]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[21]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[22]  Giuseppe Toscani,et al.  Sur l'inégalité logarithmique de Sobolev , 1997 .

[23]  S. Rachev,et al.  Mass transportation problems , 1998 .

[24]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[25]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[26]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[27]  Ansgar Jüngel,et al.  Global Nonnegative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems , 2000, SIAM J. Math. Anal..

[28]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[29]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[30]  Giuseppe Toscani,et al.  Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation , 2002 .

[31]  C. Villani Topics in Optimal Transportation , 2003 .

[32]  Exponential time decay of solutions to a nonlinear fourth-order parabolic equation , 2003 .

[33]  Michael Loss,et al.  Logarithmic Sobolev Inequalities and Spectral Gaps , 2004 .

[34]  C. Villani,et al.  ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .

[35]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[36]  G. Prato,et al.  Elliptic operators with unbounded drift coefficients and Neumann boundary condition , 2004 .

[37]  I. Gentil,et al.  A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities , 2004 .

[38]  María J. Cáceres,et al.  Long-time behavior for a nonlinear fourth-order parabolic equation , 2004 .

[39]  J. Rodrigues,et al.  Recent Advances in the Theory and Applications of Mass Transport , 2004 .

[40]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[41]  Ansgar Jüngel,et al.  A Nonlinear Fourth-order Parabolic Equation with Nonhomogeneous Boundary Conditions , 2006, SIAM J. Math. Anal..

[42]  An algorithmic construction of entropies in higher-order nonlinear PDEs , 2006 .

[43]  L. Ambrosio,et al.  Chapter 1 – Gradient Flows of Probability Measures , 2007 .

[44]  L. Ambrosio,et al.  Existence and stability for Fokker–Planck equations with log-concave reference measure , 2007, Probability Theory and Related Fields.

[45]  Ansgar Jüngel,et al.  The Derrida-Lebowitz-Speer-Spohn Equation: Existence, NonUniqueness, and Decay Rates of the Solutions , 2008, SIAM J. Math. Anal..