The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation
暂无分享,去创建一个
[1] Mitio Nagumo. Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .
[2] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[3] J. Serrin,et al. Sublinear functions of measures and variational integrals , 1964 .
[4] Nelson M. Blachman,et al. The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.
[5] H. McKean. Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .
[6] H. Brezis. On a characterization of flow-invariant sets , 1970 .
[7] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[8] M. Émery,et al. Inégalités de Sobolev pour un semi-groupe symétrique , 1985 .
[9] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[10] M. Knott,et al. Note on the optimal transportation of distributions , 1987 .
[11] Giuseppe Buttazzo,et al. Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .
[12] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[13] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[14] Lebowitz,et al. Fluctuations of a stationary nonequilibrium interface. , 1991, Physical review letters.
[15] A. Ambrosetti,et al. A primer of nonlinear analysis , 1993 .
[16] Pavel Bleher,et al. Existence and positivity of solutions of a fourth‐order nonlinear PDE describing interface fluctuations , 1994 .
[17] Pierre-Louis Lions,et al. A Strengthened Central Limit Theorem for Smooth Densities , 1995 .
[18] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[19] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[20] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[21] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[22] Giuseppe Toscani,et al. Sur l'inégalité logarithmique de Sobolev , 1997 .
[23] S. Rachev,et al. Mass transportation problems , 1998 .
[24] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[25] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[26] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[27] Ansgar Jüngel,et al. Global Nonnegative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems , 2000, SIAM J. Math. Anal..
[28] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[29] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[30] Giuseppe Toscani,et al. Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation , 2002 .
[31] C. Villani. Topics in Optimal Transportation , 2003 .
[32] Exponential time decay of solutions to a nonlinear fourth-order parabolic equation , 2003 .
[33] Michael Loss,et al. Logarithmic Sobolev Inequalities and Spectral Gaps , 2004 .
[34] C. Villani,et al. ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .
[35] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[36] G. Prato,et al. Elliptic operators with unbounded drift coefficients and Neumann boundary condition , 2004 .
[37] I. Gentil,et al. A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities , 2004 .
[38] María J. Cáceres,et al. Long-time behavior for a nonlinear fourth-order parabolic equation , 2004 .
[39] J. Rodrigues,et al. Recent Advances in the Theory and Applications of Mass Transport , 2004 .
[40] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[41] Ansgar Jüngel,et al. A Nonlinear Fourth-order Parabolic Equation with Nonhomogeneous Boundary Conditions , 2006, SIAM J. Math. Anal..
[42] An algorithmic construction of entropies in higher-order nonlinear PDEs , 2006 .
[43] L. Ambrosio,et al. Chapter 1 – Gradient Flows of Probability Measures , 2007 .
[44] L. Ambrosio,et al. Existence and stability for Fokker–Planck equations with log-concave reference measure , 2007, Probability Theory and Related Fields.
[45] Ansgar Jüngel,et al. The Derrida-Lebowitz-Speer-Spohn Equation: Existence, NonUniqueness, and Decay Rates of the Solutions , 2008, SIAM J. Math. Anal..