Lyman break galaxies at z= 4–6 in cosmological smoothed particle hydrodynamics simulations
暂无分享,去创建一个
[1] Kyriacos Patatas. Radiation , 2008, BMJ : British Medical Journal.
[2] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[3] R. de Grijs,et al. Starbursts: From 30 Doradus to Lyman Break Galaxies , 2005 .
[4] T. D. Matteo,et al. Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.
[5] V. Springel,et al. Massive Galaxies and Extremely Red Objects at z = 1-3 in Cosmological Hydrodynamic Simulations: Near-Infrared Properties , 2005, astro-ph/0502001.
[6] R. Windhorst,et al. Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004, astro-ph/0407493.
[7] V. Springel,et al. Massive Galaxies in Cosmological Simulations: Ultraviolet-selected Sample at Redshift z = 2 , 2004, astro-ph/0406032.
[8] R. Bouwens,et al. Star Formation at z ~ 6: The Hubble Ultra Deep Parallel Fields , 2004 .
[9] Matias Zaldarriaga,et al. Statistical Probes of Reionization with 21 Centimeter Tomography , 2004, astro-ph/0404112.
[10] M. Zaldarriaga,et al. The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.
[11] V. Springel,et al. Abundance of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2004 .
[12] Lars Hernquist,et al. Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.
[13] V. Springel,et al. Is There a Missing Galaxy Problem at High Redshift? , 2003, astro-ph/0311294.
[14] V. Springel,et al. Photometric properties of Lyman-break galaxies at z = 3 in cosmological SPH simulations , 2003, astro-ph/0311295.
[15] J. Devriendt,et al. galics– III. Properties of Lyman-break galaxies at a redshift of 3 , 2003, astro-ph/0310071.
[16] V. Springel,et al. Ultraviolet Line Emission from Metals in the Low-Redshift Intergalactic Medium , 2003, astro-ph/0309736.
[17] S. Okamura,et al. Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.
[18] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[19] Padova,et al. Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.
[20] S. M. Fall,et al. The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts z > 3.5 , 2003, astro-ph/0309065.
[21] Volker Springel,et al. Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2003, astro-ph/0305409.
[22] M. Giavalisco,et al. Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.
[23] N. Gnedin,et al. Lyman Break Galaxies and Reionization of Universe , 2003, astro-ph/0303386.
[24] V. Springel,et al. Abundance of damped Lyman-alpha absorbers in cosmological SPH simulations , 2003, astro-ph/0302187.
[25] S. Okamura,et al. Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.
[26] C. Steidel,et al. Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.
[27] V. Springel,et al. An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.
[28] V. Springel,et al. The history of star formation in a lcdm universe , 2002, astro-ph/0206395.
[29] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.
[30] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.
[31] K. Nagamine. Lyman Break Galaxies: Their Progenitors and Descendants , 2001, astro-ph/0109104.
[32] M. Giavalisco,et al. The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.
[33] R. Ellis,et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.
[34] Walter A. Siegmund,et al. The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.
[35] D. Weinberg,et al. High-Redshift Galaxies in Cold Dark Matter Models , 2000, astro-ph/0005340.
[36] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[37] R. Davé,et al. The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.
[38] R. Wechsler,et al. The nature of high-redshift galaxies , 1998, astro-ph/0006364.
[39] C. S. Frenk,et al. The Epoch of Galaxy Formation , 1997, astro-ph/9703111.
[40] N. Vogt,et al. Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.
[41] L. Hernquist,et al. Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.
[42] Takashi Ichikawa,et al. GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .
[43] D. Weinberg,et al. Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.
[44] P. Madau,et al. Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.
[45] Piero Madau,et al. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .
[46] Donald Hamilton,et al. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .
[47] L. Hernquist,et al. Some cautionary remarks about smoothed particle hydrodynamics , 1993 .
[48] P. Schechter. An analytic expression for the luminosity function for galaxies , 1976 .
[49] V. Springel,et al. SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .
[50] Cambridge,et al. ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .