Lyman break galaxies at z= 4–6 in cosmological smoothed particle hydrodynamics simulations

We perform a spectrophotometric analysis of galaxies at redshifts z = 4-6 in cosmological smoothed particle hydrodynamics simulations of a A cold dark matter universe. Our models include radiative cooling and heating by a uniform ultraviolet (UV) background, star formation, supernova feedback, and a phenomenological model for galactic winds. Analysing a series of simulations of varying box size and particle number allows us to isolate the impact of numerical resolution on our results. Specifically, we determine the luminosity functions in B, V, R, i' and z' filters, and compare the results with observational surveys of Lyman break galaxies (LBGs) performed with the Subaru telescope and the Hubble Space Telescope. We find that the simulated galaxies have UV colours consistent with observations and fall in the expected region of the colour-colour diagrams used by the Subaru group. The stellar masses of the most massive galaxies in our largest simulation increase their stellar mass from M * ∼ 10 11 M ⊙ at z = 6 to M * ∼10 11.7 M ⊙ at z = 3. Assuming a uniform extinction of E(B- V) = 0.15, we also find reasonable agreement between simulations and observations in the space density of UV bright galaxies at z = 3-6, down to the magnitude limit of each survey. For the same moderate extinction level of E(B - V) ∼0.15, the simulated luminosity functions match observational data, but have a steep faint-end slope with a ∼-2.0. We discuss the implications of the steep faint-end slope found in the simulations. Our results confirm the generic conclusion from earlier numerical studies that UV bright LBGs at z ≥ 3 are the most massive galaxies with E(B - V) ∼0.15 at each epoch.

[1]  Kyriacos Patatas Radiation , 2008, BMJ : British Medical Journal.

[2]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[3]  R. de Grijs,et al.  Starbursts: From 30 Doradus to Lyman Break Galaxies , 2005 .

[4]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[5]  V. Springel,et al.  Massive Galaxies and Extremely Red Objects at z = 1-3 in Cosmological Hydrodynamic Simulations: Near-Infrared Properties , 2005, astro-ph/0502001.

[6]  R. Windhorst,et al.  Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004, astro-ph/0407493.

[7]  V. Springel,et al.  Massive Galaxies in Cosmological Simulations: Ultraviolet-selected Sample at Redshift z = 2 , 2004, astro-ph/0406032.

[8]  R. Bouwens,et al.  Star Formation at z ~ 6: The Hubble Ultra Deep Parallel Fields , 2004 .

[9]  Matias Zaldarriaga,et al.  Statistical Probes of Reionization with 21 Centimeter Tomography , 2004, astro-ph/0404112.

[10]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[11]  V. Springel,et al.  Abundance of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2004 .

[12]  Lars Hernquist,et al.  Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.

[13]  V. Springel,et al.  Is There a Missing Galaxy Problem at High Redshift? , 2003, astro-ph/0311294.

[14]  V. Springel,et al.  Photometric properties of Lyman-break galaxies at z = 3 in cosmological SPH simulations , 2003, astro-ph/0311295.

[15]  J. Devriendt,et al.  galics– III. Properties of Lyman-break galaxies at a redshift of 3 , 2003, astro-ph/0310071.

[16]  V. Springel,et al.  Ultraviolet Line Emission from Metals in the Low-Redshift Intergalactic Medium , 2003, astro-ph/0309736.

[17]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[18]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[19]  Padova,et al.  Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.

[20]  S. M. Fall,et al.  The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts z > 3.5 , 2003, astro-ph/0309065.

[21]  Volker Springel,et al.  Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2003, astro-ph/0305409.

[22]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[23]  N. Gnedin,et al.  Lyman Break Galaxies and Reionization of Universe , 2003, astro-ph/0303386.

[24]  V. Springel,et al.  Abundance of damped Lyman-alpha absorbers in cosmological SPH simulations , 2003, astro-ph/0302187.

[25]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[26]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[27]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[28]  V. Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[29]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[30]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[31]  K. Nagamine Lyman Break Galaxies: Their Progenitors and Descendants , 2001, astro-ph/0109104.

[32]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[33]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[34]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[35]  D. Weinberg,et al.  High-Redshift Galaxies in Cold Dark Matter Models , 2000, astro-ph/0005340.

[36]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[37]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[38]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[39]  C. S. Frenk,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[40]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[41]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[42]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[43]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[44]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[45]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[46]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[47]  L. Hernquist,et al.  Some cautionary remarks about smoothed particle hydrodynamics , 1993 .

[48]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[49]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[50]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .