BioASQ: A Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering

BioASQ is a series of challenges that aims to assess the performance of information systems in supporting two tasks that are central to the biomedical question answering process: a the indexing of large volumes of unlabelled data, primarily scientific articles, with biomedical concepts, b the processing of biomedical questions and the generation of answers and supporting material. In this paper, the main results of the first two BioASQ challenges are presented.

[1]  Alan R. Aronson,et al.  An overview of MetaMap: historical perspective and recent advances , 2010, J. Am. Medical Informatics Assoc..

[2]  Michael Schroeder,et al.  Answering Factoid Questions in the Biomedical Domain , 2013, BioASQ@CLEF.

[3]  José Luis Vicedo González,et al.  TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..

[4]  Wendy Hall,et al.  The Semantic Web Revisited , 2006, IEEE Intelligent Systems.

[5]  Dina Demner-Fushman,et al.  Recent Enhancements to the NLM Medical Text Indexer , 2014, CLEF.

[6]  Grigorios Tsoumakas,et al.  Large-Scale Semantic Indexing of Biomedical Publications , 2013, BioASQ@CLEF.

[7]  Jinwook Choi,et al.  Classification and Retrieval of Biomedical Literatures: SNUMedinfo at CLEF QA track BioASQ 2014 , 2014, CLEF.

[8]  Abraham Bernstein,et al.  Evaluating the usability of natural language query languages and interfaces to Semantic Web knowledge bases , 2010, J. Web Semant..

[9]  Diego Molla Aliod,et al.  Question Answering in Restricted Domains: An Overview , 2007, CL.

[10]  Zhiyong Lu,et al.  NCBI at the 2013 BioASQ challenge task: Learning to rank for automatic MeSH indexing , 2013 .

[11]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[12]  Luis M. de Campos,et al.  Two Hierarchical Text Categorization Approaches for BioASQ Semantic Indexing Challenge , 2013, BioASQ@CLEF.

[13]  Zhiyong Lu,et al.  Recommending MeSH terms for annotating biomedical articles , 2011, J. Am. Medical Informatics Assoc..

[14]  Trevor Cohen,et al.  Deterministic Binary Vectors for Efficient Automated Indexing of MEDLINE/PubMed Abstracts , 2012, AMIA.

[15]  Antonio Jimeno-Yepes,et al.  MeSH indexing based on automatically generated summaries , 2013, BMC Bioinformatics.

[16]  Enrico Motta,et al.  AquaLog: An ontology-driven question answering system for organizational semantic intranets , 2007, J. Web Semant..

[17]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[18]  Axel-Cyrille Ngonga Ngomo,et al.  A tool suite for creating question answering benchmarks , 2014, LREC.

[19]  Gary G. Hendrix,et al.  Developing a natural language interface to complex data , 1977, TODS.

[20]  Günter Neumann,et al.  The QALL-ME Framework: A specifiable-domain multilingual Question Answering architecture , 2011, J. Web Semant..

[21]  David H. D. Warren,et al.  An Efficient Easily Adaptable System for Interpreting Natural Language Queries , 1982, CL.

[22]  Ioannis Partalas,et al.  Results of the First BioASQ Workshop , 2013, BioASQ@CLEF.

[23]  Rodney D. Nielsen,et al.  The MiPACQ clinical question answering system. , 2011, AMIA ... Annual Symposium proceedings. AMIA Symposium.

[24]  Antonio Jimeno-Yepes,et al.  The NLM Medical Text Indexer System for Indexing Biomedical Literature , 2013, BioASQ@CLEF.

[25]  Yannis Papanikolaou,et al.  Ensemble Approaches for Large-Scale Multi-Label Classification and Question Answering in Biomedicine , 2014, CLEF.

[26]  Mariana L. Neves HPI in-memory-based Database System in Task 2b of BioASQ , 2014, CLEF.

[27]  Andreas Doms,et al.  GoPubMed: ontology based literature search for the life sciences , 2008 .

[28]  Hong Yu,et al.  Beyond Information Retrieval - Medical Question Answering , 2006, AMIA.

[29]  Georgios Paliouras,et al.  Evaluation measures for hierarchical classification: a unified view and novel approaches , 2013, Data Mining and Knowledge Discovery.

[30]  Fernando Benites,et al.  An Empirical Comparison of Flat and Hierarchical Performance Measures for Multi-Label Classification with Hierarchy Extraction , 2011, KES.

[31]  Joel Adams,et al.  Automatic Classification of PubMed Abstracts with Latent Semantic Indexing: Working Notes , 2014, CLEF.

[32]  Lei Tang,et al.  Large scale multi-label classification via metalabeler , 2009, WWW '09.

[33]  Alex A. Freitas,et al.  A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.

[34]  Luis M. de Campos,et al.  CoLe and UTAI Participation at the 2014 BioASQ Semantic Indexing Challenge , 2014, CLEF.

[35]  Hong Yu,et al.  AskHERMES: An online question answering system for complex clinical questions , 2011, J. Biomed. Informatics.

[36]  Zhiyong Lu,et al.  NCBI at the 2014 BioASQ Challenge Task: Large-scale Biomedical Semantic Indexing and Question Answering , 2014, CLEF.

[37]  Peter Thanisch,et al.  Natural language interfaces to databases – an introduction , 1995, Natural Language Engineering.

[38]  M VoorheesEllen The TREC question answering track , 2001 .

[39]  Ellen M. Voorhees,et al.  TREC genomics special issue overview , 2009, Information Retrieval.

[40]  Temple F. Smith,et al.  Comparison of biosequences , 1981 .

[41]  George A. Vouros,et al.  Summarization system evaluation revisited: N-gram graphs , 2008, TSLP.

[42]  Xiangji Huang,et al.  Overview of the TREC 2011 Chemical IR Track , 2009, TREC.

[43]  ChengXiang Zhai,et al.  The Fudan-UIUC Participation in the BioASQ Challenge Task 2a: The Antinomyra system , 2014, CLEF.

[44]  Hyoil Han,et al.  Biomedical question answering: A survey , 2010, Comput. Methods Programs Biomed..

[45]  Georgios Paliouras,et al.  The ECIR 2010 large scale hierarchical classification workshop , 2010, SIGF.

[46]  Karen Spärck Jones,et al.  Natural language interfaces to databases , 1990, The Knowledge Engineering Review.

[47]  Eduard H. Hovy,et al.  Summarization Evaluation Using Transformed Basic Elements , 2008, TAC.