Satellite-Derived NDVI, LST, and Climatic Factors Driving the Distribution and Abundance of Anopheles Mosquitoes in a Former Malarious Area in Northwest Argentina

ABSTRACT: Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas.

[1]  J. Patz,et al.  Effects of environmental change on emerging parasitic diseases. , 2000, International journal for parasitology.

[2]  S W Lindsay,et al.  Climate change and vector-borne diseases: a regional analysis. , 2000, Bulletin of the World Health Organization.

[3]  A. Githeko,et al.  Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. , 2009, The American journal of tropical medicine and hygiene.

[4]  W. Almirón,et al.  [Spatial distribution of Anopheles pseudopunctipennis in the Yungas de Salta rainforest, Argentina]. , 2005, Revista de saude publica.

[5]  W. Almirón,et al.  Abundance patterns of Anopheles pseudopunctipennis and Anopheles argyritarsis in northwestern Argentina. , 2010, Acta tropica.

[6]  R. Novak,et al.  Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya , 2007, International journal of health geographics.

[7]  D R Roberts,et al.  Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. , 1994, The American journal of tropical medicine and hygiene.

[8]  E. Rejmánková,et al.  Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. , 1995, The American journal of tropical medicine and hygiene.

[9]  M. Faran Mosquito studies (Diptera, Cilicidae). XXXIV. A revision of the albimanus section of the subgenus Nyssorhynchus of Anopheles. , 1980 .

[10]  R. Snow,et al.  A climate-based distribution model of malaria transmission in sub-Saharan Africa. , 1999, Parasitology today.

[11]  G. Poveda,et al.  Laboratory estimation of the effects of increasing temperatures on the duration of gonotrophic cycle of Anopheles albimanus (Diptera: Culicidae). , 2005, Memorias do Instituto Oswaldo Cruz.

[12]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[13]  John Grieco,et al.  MOSQUITO HABITATS, LAND USE, AND MALARIA RISK IN BELIZE FROM SATELLITE IMAGERY , 2005 .

[14]  K. Lindblade,et al.  Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda , 2000, Tropical medicine & international health : TM & IH.

[15]  Compton J. Tucker,et al.  Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa , 2006 .

[16]  Charles E Taylor,et al.  Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. , 2007, The American journal of tropical medicine and hygiene.

[17]  R. Sauerborn,et al.  Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa , 2012, International Journal of Health Geographics.

[18]  S. Manguin,et al.  Apparent changes in the abundance and distribution of Anopheles species on Grenada island. , 1993, Journal of the American Mosquito Control Association.

[19]  J. Seixas,et al.  Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal , 2011, Journal of vector ecology : journal of the Society for Vector Ecology.

[20]  A. Githeko,et al.  Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands , 2006, Malaria Journal.

[21]  R. Jackson,et al.  Spectral response of architecturally different wheat canopies , 1986 .

[22]  Jonathan A. Patz,et al.  Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence , 2004, Environmental health perspectives.

[23]  J. Seixas,et al.  Modelling Patterns of Mosquito Density Based on Remote Sensing Images , 2005 .

[24]  Yasmin Rubio-Palis,et al.  Evaluación semanal de la relación malaria, precipitación y temperatura del aire en la Península de Paria, estado Sucre, Venezuela , 2007 .

[25]  R. López-Vélez,et al.  CAMBIO CLIMÁTICO EN ESPAÑA Y RIESGO DE ENFERMEDADES INFECCIOSAS Y PARASITARIAS TRANSMITIDAS POR ARTRÓPODOS Y ROEDORES , 2005 .

[26]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[27]  R. Levins,et al.  Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. , 2007, The American journal of tropical medicine and hygiene.

[28]  J. Hemingway,et al.  Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya , 2009, Malaria Journal.

[29]  J. Twisk,et al.  Longitudinal Data Analysis. A Comparison Between Generalized Estimating Equations and Random Coefficient Analysis , 2003, European Journal of Epidemiology.

[30]  D R Roberts,et al.  Predictions of malaria vector distribution in Belize based on multispectral satellite data. , 1996, The American journal of tropical medicine and hygiene.

[31]  Ranga B. Myneni,et al.  Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies , 1992 .

[32]  L. R. Beck,et al.  Perspectives Perspectives Perspectives Perspectives Perspectives Remote Sensing and Human Health: New Sensors and New Opportunities , 2022 .

[33]  D. Strickman,et al.  Illustrated key to the female anopheline mosquitoes of Central America and Mexico. , 1990, Journal of the American Mosquito Control Association.