Satellite-Derived NDVI, LST, and Climatic Factors Driving the Distribution and Abundance of Anopheles Mosquitoes in a Former Malarious Area in Northwest Argentina
暂无分享,去创建一个
Paolo Sartor | W. Almirón | E. Estallo | M. Lamfri | M. Zaidenberg | P. Sartor | María Julia Dantur Juri | Elizabet Estallo | Walter Almirón | Mirta Santana | Mario Lamfri | Mario Zaidenberg | Mirta Santana | M. J. Juri
[1] J. Patz,et al. Effects of environmental change on emerging parasitic diseases. , 2000, International journal for parasitology.
[2] S W Lindsay,et al. Climate change and vector-borne diseases: a regional analysis. , 2000, Bulletin of the World Health Organization.
[3] A. Githeko,et al. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. , 2009, The American journal of tropical medicine and hygiene.
[4] W. Almirón,et al. [Spatial distribution of Anopheles pseudopunctipennis in the Yungas de Salta rainforest, Argentina]. , 2005, Revista de saude publica.
[5] W. Almirón,et al. Abundance patterns of Anopheles pseudopunctipennis and Anopheles argyritarsis in northwestern Argentina. , 2010, Acta tropica.
[6] R. Novak,et al. Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya , 2007, International journal of health geographics.
[7] D R Roberts,et al. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. , 1994, The American journal of tropical medicine and hygiene.
[8] E. Rejmánková,et al. Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. , 1995, The American journal of tropical medicine and hygiene.
[9] M. Faran. Mosquito studies (Diptera, Cilicidae). XXXIV. A revision of the albimanus section of the subgenus Nyssorhynchus of Anopheles. , 1980 .
[10] R. Snow,et al. A climate-based distribution model of malaria transmission in sub-Saharan Africa. , 1999, Parasitology today.
[11] G. Poveda,et al. Laboratory estimation of the effects of increasing temperatures on the duration of gonotrophic cycle of Anopheles albimanus (Diptera: Culicidae). , 2005, Memorias do Instituto Oswaldo Cruz.
[12] José A. Sobrino,et al. Satellite-derived land surface temperature: Current status and perspectives , 2013 .
[13] John Grieco,et al. MOSQUITO HABITATS, LAND USE, AND MALARIA RISK IN BELIZE FROM SATELLITE IMAGERY , 2005 .
[14] K. Lindblade,et al. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda , 2000, Tropical medicine & international health : TM & IH.
[15] Compton J. Tucker,et al. Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa , 2006 .
[16] Charles E Taylor,et al. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. , 2007, The American journal of tropical medicine and hygiene.
[17] R. Sauerborn,et al. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa , 2012, International Journal of Health Geographics.
[18] S. Manguin,et al. Apparent changes in the abundance and distribution of Anopheles species on Grenada island. , 1993, Journal of the American Mosquito Control Association.
[19] J. Seixas,et al. Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal , 2011, Journal of vector ecology : journal of the Society for Vector Ecology.
[20] A. Githeko,et al. Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands , 2006, Malaria Journal.
[21] R. Jackson,et al. Spectral response of architecturally different wheat canopies , 1986 .
[22] Jonathan A. Patz,et al. Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence , 2004, Environmental health perspectives.
[23] J. Seixas,et al. Modelling Patterns of Mosquito Density Based on Remote Sensing Images , 2005 .
[24] Yasmin Rubio-Palis,et al. Evaluación semanal de la relación malaria, precipitación y temperatura del aire en la Península de Paria, estado Sucre, Venezuela , 2007 .
[25] R. López-Vélez,et al. CAMBIO CLIMÁTICO EN ESPAÑA Y RIESGO DE ENFERMEDADES INFECCIOSAS Y PARASITARIAS TRANSMITIDAS POR ARTRÓPODOS Y ROEDORES , 2005 .
[26] J. Hansen,et al. GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .
[27] R. Levins,et al. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. , 2007, The American journal of tropical medicine and hygiene.
[28] J. Hemingway,et al. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya , 2009, Malaria Journal.
[29] J. Twisk,et al. Longitudinal Data Analysis. A Comparison Between Generalized Estimating Equations and Random Coefficient Analysis , 2003, European Journal of Epidemiology.
[30] D R Roberts,et al. Predictions of malaria vector distribution in Belize based on multispectral satellite data. , 1996, The American journal of tropical medicine and hygiene.
[31] Ranga B. Myneni,et al. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies , 1992 .
[32] L. R. Beck,et al. Perspectives Perspectives Perspectives Perspectives Perspectives Remote Sensing and Human Health: New Sensors and New Opportunities , 2022 .
[33] D. Strickman,et al. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. , 1990, Journal of the American Mosquito Control Association.