Laser-induced carbonization of stainless steel as a corrosion mitigation strategy for high-temperature molten salts applications

[1]  Ze Sun,et al.  Acceleration of Thermal Decomposition of Molten Nitrates by Cr in Steel and Promotion of This Effect by Halogens , 2022, AIChE Journal.

[2]  O. Bondarchuk,et al.  Effect of dynamic conditions on high-temperature corrosion of ternary carbonate salt for thermal energy storage applications , 2022, Solar Energy Materials and Solar Cells.

[3]  C. Villada,et al.  Corrosion performance of austenitic stainless steel SS304 in molten nitrate salts and Raman microscopy for stability analysis in thermal energy storage applications , 2021, Journal of Energy Storage.

[4]  F. Lusquiños,et al.  Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length , 2021, Surface and Coatings Technology.

[5]  M. Engelhard,et al.  Microstructural basis for improved corrosion resistance of laser surface processed AZ31 Mg alloy , 2021 .

[6]  R. Pitchumani,et al.  Fractal textured surfaces for high temperature corrosion mitigation in molten salts , 2021 .

[7]  X. Mei,et al.  Femtosecond laser polishing yttria-stabilized zirconia coatings for improving molten salts corrosion resistance , 2021 .

[8]  P. D. Babu,et al.  Influence of laser parameters on superhydrophobicity- A review , 2021, Engineering Research Express.

[9]  S. Serena,et al.  Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis , 2021, Energies.

[10]  K. Ravi Kumar,et al.  Solar thermal energy technologies and its applications for process heating and power generation – A review , 2021 .

[11]  Jing Luo,et al.  Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants , 2020 .

[12]  M. Gedvilas,et al.  Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes , 2020, RSC advances.

[13]  H. Paksoy,et al.  Review on sensible thermal energy storage for industrial solar applications and sustainability aspects , 2020 .

[14]  M. E. Navarro,et al.  Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power , 2020 .

[15]  L. Cabeza,et al.  Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 2: Materials screening performance , 2020 .

[16]  Yu Qiu,et al.  Perspective of concentrating solar power , 2020 .

[17]  L. Cabeza,et al.  Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: Thermal treatment assessment , 2020, Journal of Energy Storage.

[18]  M. E. Navarro,et al.  Nanoparticles as a high-temperature anticorrosion additive to molten nitrate salts for concentrated solar power , 2019 .

[19]  M. R. Hill,et al.  On the effect of cold-rolling on the corrosion of SS316L alloy in a molten carbonate salt , 2019, Solar Energy Materials and Solar Cells.

[20]  Joe Coventry,et al.  Sensible energy storage options for concentrating solar power plants operating above 600 °C , 2019, Renewable and Sustainable Energy Reviews.

[21]  A. Bielecki,et al.  Concentrated Solar Power Plants with Molten Salt Storage: Economic Aspects and Perspectives in the European Union , 2019, International Journal of Photoenergy.

[22]  Xianping Liu,et al.  Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Hybrid Laser Ablation and Silanization Process , 2019, Materials.

[23]  S. Dimov,et al.  Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy , 2019, Applied Surface Science.

[24]  Yanling Tian,et al.  Study on the Fabrication of Super-Hydrophobic Surface on Inconel Alloy via Nanosecond Laser Ablation , 2019, Materials.

[25]  Miguel Ángel Martínez,et al.  Corrosion of AISI316 as containment material for latent heat thermal energy storage systems based on carbonates , 2018, Solar Energy Materials and Solar Cells.

[26]  Yaroslav Grosu,et al.  A simple method for the inhibition of the corrosion of carbon steel by molten nitrate salt for thermal storage in concentrating solar power applications , 2018, npj Materials Degradation.

[27]  M. I. Lasanta,et al.  Corrosion resistance of Cr/Ni alloy to a molten carbonate salt at various temperatures for the next generation high-temperature CSP plants , 2018, Solar Energy.

[28]  S. Sah,et al.  Corrosion behaviour of austenitic stainless steels in carbonate melt at 923 K under controlled CO2-O2 environment , 2018 .

[29]  Judith C. Gomez-Vidal Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications , 2017, npj Materials Degradation.

[30]  S. Dimov,et al.  Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy , 2017 .

[31]  G. Will,et al.  Comparative interaction of cold-worked versus annealed inconel 601 with molten carbonate salt at 450 °C , 2017 .

[32]  M. Boča,et al.  High-Temperature Corrosion Behavior of Superalloys in Molten Salts – A Review , 2017 .

[33]  M. I. Lasanta,et al.  Corrosion resistance of HR3C to a carbonate molten salt for energy storage applications in CSP plants , 2016 .

[34]  J. Ocaña,et al.  Corrosion resistance of laser patterned ultrahydrophobic aluminium surface , 2016 .

[35]  M. Zhong,et al.  Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. , 2015, Journal of colloid and interface science.

[36]  H. Strauss,et al.  Airborne hydrocarbon contamination from laboratory atmospheres , 2014 .

[37]  Seong J. Cho,et al.  One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation , 2014 .

[38]  H. Kwon,et al.  Electrochemical analysis on the growth of oxide formed on stainless steels in molten carbonate at 650 °C , 2014 .

[39]  M. Bocquet,et al.  Graphene on metal surfaces , 2009 .

[40]  Shakeel Ahmed,et al.  Decomposition of hydrocarbons to hydrogen and carbon , 2009 .

[41]  S. Loreti,et al.  The role of alkaline-earth additives on the molten carbonate corrosion of 316L stainless steel , 2007 .

[42]  K. Ui,et al.  Corrosion Behavior of Fe-Cr Alloys in Li2CO3-K2CO3 Molten Carbonate , 2005 .

[43]  Yunchang Zhang,et al.  Preparation and Characterization of Iron Manganese Carbide by Reaction of the Oxides and Carbon in Nitrogen , 1994 .

[44]  G. Will,et al.  Stress assisted oxidative failure of Inconel 601 for thermal energy storage , 2017 .

[45]  H. Ibach,et al.  Decomposition of hydrocarbons on flat and stepped Ni(111) surfaces , 1979 .