Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties

[1]  M. S. Hossain,et al.  Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality , 2021 .

[2]  Hao Wu,et al.  Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel , 2021, International Journal of Minerals, Metallurgy and Materials.

[3]  C. Shang,et al.  Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel , 2021, International Journal of Minerals, Metallurgy and Materials.

[4]  A. Zhao,et al.  Effect of Mo content on the thermal stability of Ti-Mo-bearing ferritic steel , 2021, International Journal of Minerals, Metallurgy and Materials.

[5]  Liang Dong,et al.  China’s Carbon Neutrality Policy: Objectives, Impacts and Paths , 2021 .

[6]  Haibo Sun,et al.  On the correlation among continuous cooling transformations, interphase precipitation and strengthening mechanism in Ti-microalloyed steel , 2021 .

[7]  Xin Li,et al.  Control of TiN precipitation behavior in titanium-containing micro-alloyed steel , 2020 .

[8]  R. Misra,et al.  Recent progress in third-generation low alloy steels developed under M3 microstructure control , 2020, International Journal of Minerals, Metallurgy and Materials.

[9]  H. Bhadeshia Interpretation of the Microstructure of Steels , 2020 .

[10]  T. N. Baker,et al.  Titanium microalloyed steels , 2019 .

[11]  Dengfu Chen,et al.  Effect of coarse TiN inclusions and microstructure on impact toughness fluctuation in Ti micro-alloyed steel , 2018, Journal of Iron and Steel Research International.

[12]  Changrong Li,et al.  Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr–Mo–V steel for brake discs , 2018, International Journal of Minerals, Metallurgy, and Materials.

[13]  B. López,et al.  Some Metallurgical Issues Concerning Austenite Conditioning in Nb-Ti and Nb-Mo Microalloyed Steels Processed by Near-Net-Shape Casting and Direct Rolling Technologies , 2017, Metallurgical and Materials Transactions A.

[14]  Yinghui Wei,et al.  Strengthening mechanisms for Ti- and Nb-Ti-micro-alloyed high-strength steels , 2016 .

[15]  Q. Yong,et al.  Development of Ti–V–Mo Complex Microalloyed Hot-Rolled 900-MPa-Grade High-Strength Steel , 2015, Acta Metallurgica Sinica (English Letters).

[16]  H. Matsuura,et al.  Effect of Inclusions’ Behavior on the Microstructure in Al-Ti Deoxidized and Magnesium-Treated Steel with Different Aluminum Contents , 2015, Metallurgical and Materials Transactions B.

[17]  Seong-Gu Hong,et al.  Role of rolling temperature in the precipitation hardening characteristics of Ti–Mo microalloyed hot-rolled high strength steel , 2014 .

[18]  Gang Huang,et al.  In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels , 2014, International Journal of Minerals, Metallurgy, and Materials.

[19]  Mao Xin-pin Development of Thin Slab Casting and Direct Rolling Process in China , 2014 .

[20]  Paul Kah,et al.  Welding of Ultra High Strength Steels , 2013 .

[21]  Y. Park,et al.  Effect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels , 2013 .

[22]  H. Bhadeshia,et al.  Interphase precipitation in Ti–Nb and Ti–Nb–Mo bearing steel , 2013 .

[23]  Yuan Xiao-na,et al.  EFFECTS OF DEFORMATION AND COOLING RATE ON NANO-SCALE PRECIPITATION IN HOT-ROLLED ULTRA-HIGH STRENGTH STEEL , 2013 .

[24]  Di Hong-shuang Austenitic Transformation Behavior of Hot-Rolled 590 MPa Grade Wheel Steel , 2013 .

[25]  I. Shimizu,et al.  Influence of Ti and Nb on the Strength–Ductility–Hole Expansion Ratio Balance of Hot-rolled Low-carbon High-strength Steel Sheets , 2012 .

[26]  Y. Funakawa Mechanical Properties of Ultra Fine Particle Dispersion Strengthened Ferritic Steel , 2012 .

[27]  D. Suh,et al.  Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations , 2012 .

[28]  Xiaonan Wang,et al.  Study on Fatigue Property of New Type Hot-rolled Nano Precipitation Strengthening Ultra-high Strength Automobile Strip , 2012 .

[29]  Po-Yu Chen,et al.  Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel , 2011 .

[30]  X. Mao,et al.  Microstructure and Property of 700MPa Ti Microalloyed High Strength Steel Produced by EAF-CSP , 2011 .

[31]  J. Yang,et al.  Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel , 2011 .

[32]  Di Hong-shuang Industrial Trial of 780 MPa Grade Heavy-Duty Truck Beams Steels , 2011 .

[33]  A. Borgenstam,et al.  Interphase precipitation in niobium-microalloyed steels , 2010 .

[34]  J. Robla,et al.  Simplification of Hot Rolling Schedule in Ti-Microalloyed Steels with Optimised Ti/N Ratio , 2010 .

[35]  Guojun Ma,et al.  The development of Ti-alloyed high strength microalloy steel , 2010 .

[36]  T. Y. Wang,et al.  Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel , 2010 .

[37]  J. Yang,et al.  Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel , 2009 .

[38]  J. Yang,et al.  Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides , 2009 .

[39]  G. Voort,et al.  MICROSTRUCTURAL CHARACTERIZATION OF CARBURIZED STEELS , 2009 .

[40]  J. Cabrera,et al.  Hot flow behavior of boron microalloyed steels , 2008 .

[41]  Y. Funakawa,et al.  Coarsening Behavior of Nanometer-Sized Carbides in Hot-Rolled High Strength Sheet Steel , 2007 .

[42]  L. P Application of a New Model to the Interphase Precipitation Reaction in Vanadium Steels , 2007 .

[43]  Li Ping-he Nitride and Carbonitride Precipitation Behavior in a Nb-Ti Microalloyed Extra Low Carbon HSLA Steel , 2007 .

[44]  Gan Yong Behavior of Precipitation Containing Titanium During Solidification , 2007 .

[45]  Liu Zhong-zhu Recent progress in oxide metallurgy technology and its application , 2007 .

[46]  M. Toroghinezhad,et al.  EFFECT OF TI-MICROALLOY ADDITION ON THE FORMABILITY AND MECHANICAL PROPERTIES OF A LOW CARBON (ST14) STEEL , 2006 .

[47]  Yu Hao Simulation of Precipitation Behaviors of the Precipitates in Ti-IF Steel Produced by TSCR Process , 2006 .

[48]  Zhou Jian Effect of Ti on the mechanical properties of high strength weathering steel , 2006 .

[49]  Zhang Wen-ping Study on the Precipitates of Ti-IF Steel Hot-Rolled in Ferrite Region , 2006 .

[50]  XU Chuan-fen,et al.  Development and Research of 550 MPa High Strength and High Formability Plate , 2006 .

[51]  Sun Xinjun,et al.  PHYSICAL METALLURGY FOR THE TITANIUM MICROALLOYED STRIP PRODUCED BY THIN SLAB CASTING AND ROLLING PROCESS , 2006 .

[52]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[53]  J. Rodríguez-Ibabe Thin Slab Direct Rolling of Microalloyed Steels , 2005 .

[54]  R. Misra,et al.  Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel , 2005 .

[55]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[56]  FU Jun-yan Development History of Nb-microalloying Technology and Progress of Nb-microalloyed Steels , 2005 .

[57]  Wang Guo-dong,et al.  Study on the Performance of Carbonitride Precipitation in Nb-Ti Microalloyed Steels , 2005 .

[58]  Yoichi Tanaka Progress in TMCP Technology and Expansion of Its Range of Application , 2005 .

[59]  A. DeArdo,et al.  Niobium in modern steels , 2003 .

[60]  Xineyang,et al.  Precipitation and growth of titanium nitride during solidification of clean steel , 2003 .

[61]  Hashimoto Shunichi,et al.  780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system , 2003 .

[62]  H. Lee,et al.  Precipitation and Recrystallization Behavior in Extra Low Carbon Steels , 2002 .

[63]  K. Yi,et al.  Effects of Titanium and Oxygen Content on Microstructure in Low Carbon Steels , 2002 .

[64]  Y. Cai-fu APPLICATIONS OF V-N MICROALLOYING TECHNOLOGY IN HSLA STEELS , 2002 .

[65]  A. Deschamps,et al.  Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel , 2001 .

[66]  A. J. deArdo,et al.  Metallurgical basis for thermomechanical processing of microalloyed steels , 2001 .

[67]  Yang Fengyi APPLICATION OF Ti TO AUTOMOBILE WHEEL STEEL AND DISCUSSION ON ALLOYING TECHNOLOGY , 2001 .

[68]  Fu Jie STUDY ON THE PRECIPITATION BEHAVIOR OF TiN IN THE MICROALLOYED STEELS , 2000 .

[69]  P. Valles,et al.  Influence of Ti and N Contents on Austenite Grain Control and Precipitate Size in Structural Steels , 1999 .

[70]  Dong Nyung Lee,et al.  Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel , 1999 .

[71]  K. Ishida,et al.  Solubility Product of TiN in Austenite , 1998 .

[72]  D. Vanderschueren,et al.  Solubility Products of Titanium Sulphide and Carbosulphide in Ultra-low Carbon Steels , 1996 .

[73]  J. Takamura,et al.  Effect of Boron on Intra-granular Ferrite Formation in Ti-Oxide Bearing Steels , 1996 .

[74]  George Krauss,et al.  Ferritic Microstructures in Continuously Cooled Low- and Ultralow-carbon Steels , 1995 .

[75]  R. Kuziak,et al.  Microstructure control of ferrite-pearlite high strength low alloy steels utilizing microalloying additions , 1995 .

[76]  E. Palmiere,et al.  Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium , 1994 .

[77]  Y. Matsumura,et al.  Thermodynamic Calculation of Solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels , 1994 .

[78]  Tadashi Saito,et al.  Effect of Chemical Composition on Recrystallization Behavior and r-value in Ti-added Ultra Low Carbon Sheet Steel. , 1994 .

[79]  K. Ushioda,et al.  Precipitation Behavior of Sulfides in Ti-added Ultra Low-carbon Steels in Austenite , 1994 .

[80]  H. Bhadeshia,et al.  Bainite in Steels , 2019 .

[81]  J. Jonas,et al.  A Reexamination of the Gibbs Energies of Formation of TiS and Ti4C2S2 in Austenite , 1990 .

[82]  H. Bhadeshia,et al.  Nucleation of Widmanstätten ferrite , 1990 .

[83]  J. A. Todd,et al.  A mass transport theory for interphase precipitation with application to vanadium steels , 1989 .

[84]  R. Howie,et al.  Rutley's Elements of Mineralogy , 1989, Mineralogical Magazine.

[85]  J. A. Todd,et al.  A new model for precipitation at moving interphase boundaries , 1988 .

[86]  J. A. Todd,et al.  Application of a new model to the interphase precipitation reaction in vanadium steels , 1988 .

[87]  D. Dunne,et al.  Structural aspects of alloy carbonitride precipitation in microalloyed steels , 1988 .

[88]  R. A. Farrar,et al.  Acicular ferrite in carbon-manganese weld metals: An overview , 1987 .

[89]  T. N. Baker,et al.  The influence of rolling variables on the strengthening mechanisms operating in niobium steels , 1984 .

[90]  J. Jonas,et al.  Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese , 1984 .

[91]  H. K. D. H. Bhadeshia,et al.  The mechanism of bainite formation in steels , 1980 .

[92]  C. Carlsson,et al.  Precipitation of VC in ferrite and pearlite during direct transformation of a medium carbon microalloyed steel , 1978 .

[93]  R. F. Mehl,et al.  Transformation from austenite in alloy steels , 1976 .

[94]  L. Brossard,et al.  Precipitation in microalloyed high-strength low-alloy steels , 1975 .

[95]  K. Narita Physical Chemistry of the Groups IVa (Ti, Zr), Va (V, Nb, Ta) and the Rare Earth Elements in Steel , 1975 .

[96]  C. J. Simpson,et al.  Grain boundary migration , 1972 .

[97]  R. Honeycombe,et al.  Precipitation of carbides at γ─α boundaries in alloy steels , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[98]  M. Whelan On the Kinetics of Precipitate Dissolution , 1969 .

[99]  T. Norén COLUMBIUM AS A MICRO-ALLOYING ELEMENT IN STEELS AND ITS EFFECT ON WELDING TECHNOLOGY , 1963 .

[100]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[101]  E. Hall The L?ders Deformation of Mild Steel , 1951 .