Regular Analog/RF Integrated Circuits Design Using Optimization With Recourse Including Ellipsoidal Uncertainty

Long design cycles due to the inability to predict silicon realities are a well-known problem that plagues analog/RF integrated circuit product development. As this problem worsens for nanoscale IC technologies, the high cost of design and multiple manufacturing spins causes fewer products to have the volume required to support full-custom implementation. Design reuse and analog synthesis make analog/RF design more affordable; however, the increasing process variability and lack of modeling accuracy remain extremely challenging for nanoscale analog/RF design. We propose a regular analog/RF IC using metal-mask configurability design methodology Optimization with Recourse of Analog Circuits including Layout Extraction (ORACLE), which is a combination of reuse and shared-use by formulating the synthesis problem as an optimization with recourse problem. Using a two-stage geometric programming with recourse approach, ORACLE solves for both the globally optimal shared and application-specific variables. Furthermore, robust optimization is proposed to treat the design with variability problem, further enhancing the ORACLE methodology by providing yield bound for each configuration of regular designs. The statistical variations of the process parameters are captured by a confidence ellipsoid. We demonstrate ORACLE for regular Low Noise Amplifier designs using metal-mask configurability, where a range of applications share common underlying structure and application-specific customization is performed using the metal-mask layers. Two RF oscillator design examples are shown to achieve robust designs with guaranteed yield bound.

[1]  Georges G. E. Gielen,et al.  Generalized posynomial performance modeling , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[2]  Rob A. Rutenbar,et al.  Remembrance of circuits past: macromodeling by data mining in large analog design spaces , 2002, DAC '02.

[3]  Stephen P. Boyd,et al.  A tutorial on geometric programming , 2007, Optimization and Engineering.

[4]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[5]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Sung-Mo Kang,et al.  Worst-case analysis and optimization of VLSI circuit performances , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[8]  C. Hu,et al.  Predicting CMOS speed with gate oxide and voltage scaling and interconnect loading effects , 1997 .

[9]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Andrzej J. Strojwas,et al.  Exploring regular fabrics to optimize the performance-cost trade-off , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[11]  C. C. McAndrew,et al.  VBIC95, the vertical bipolar inter-company model , 1996, IEEE J. Solid State Circuits.

[12]  J. L. Showell,et al.  A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design , 1997 .

[13]  A. Hajimiri,et al.  Jitter and phase noise in ring oscillators , 1999, IEEE J. Solid State Circuits.

[14]  Rob A. Rutenbar,et al.  Synthesis tools for mixed-signal ICs: progress on frontend and backend strategies , 1996, DAC '96.

[15]  Kumaraswamy Ponnambalam,et al.  A unified approach to statistical design centering of integrated circuits with correlated parameters , 1999 .

[16]  Helmut Graeb,et al.  Analog Design Centering and Sizing , 2007 .

[17]  R. Meyer,et al.  High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages , 1998, IEEE J. Solid State Circuits.

[18]  Rob A. Rutenbar,et al.  Efficient handling of operating range and manufacturing linevariations in analog cell synthesis , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Kush Gulati,et al.  A low-power reconfigurable analog-to-digital converter , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[20]  Zhi-Quan Luo,et al.  Robust gate sizing by geometric programming , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[21]  Osama Shanaa,et al.  Frequency-scalable SiGe bipolar RF front-end design , 2001 .

[22]  Peter Feldmann,et al.  Statistical integrated circuit design , 1993 .

[23]  Stephen P. Boyd,et al.  Tractable approximate robust geometric programming , 2007, Optimization and Engineering.

[24]  Kurt Antreich,et al.  Mismatch analysis and direct yield optimization by specwise linearization and feasibility-guided search , 2001, DAC '01.

[25]  Chenming Hu,et al.  Performance and V/sub dd/ scaling in deep submicrometer CMOS , 1998 .

[26]  Stephen P. Boyd,et al.  Simple accurate expressions for planar spiral inductances , 1999, IEEE J. Solid State Circuits.

[27]  Stephen P. Boyd,et al.  Geometric programming for circuit optimization , 2005, ISPD '05.

[28]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  Georges G. E. Gielen,et al.  An efficient optimization--based technique to generate posynomial performance models for analog integrated circuits , 2002, DAC '02.

[30]  L.T. Pileggi,et al.  Metal-mask configurable RF front-end circuits , 2004, IEEE Journal of Solid-State Circuits.

[31]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[32]  Xin Li,et al.  Robust Analog/RF Circuit Design With Projection-Based Performance Modeling , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[33]  Sani R. Nassif Design for Variability in DSM Technologies , 2000 .

[34]  Willy Sansen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989, ESSCIRC '89: Proceedings of the 15th European Solid-State Circuits Conference.

[35]  Chenming Hu,et al.  Performance and Vdd scaling in deep submicrometer CMOS , 1998, IEEE J. Solid State Circuits.

[36]  M. Romeo,et al.  Broad distribution effects in sums of lognormal random variables , 2002, physics/0211065.

[37]  G. Debyser,et al.  Efficient analog circuit synthesis with simultaneous yield and robustness optimization , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[38]  Donald Goldfarb,et al.  Robust convex quadratically constrained programs , 2003, Math. Program..

[39]  Georges G. E. Gielen,et al.  Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[40]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[41]  Peter Kall,et al.  Stochastic Programming , 1995 .

[42]  Stephen P. Boyd,et al.  Optimization of inductor circuits via geometric programming , 1999, DAC '99.

[43]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[44]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.