Thin Film Equations with Nonlinear Deterministic and Stochastic Perturbations

In this paper we consider stochastic thin-film equation with nonlinear drift terms, colored Gaussian Stratonovych noise, as well as nonlinear colored Wiener noise. By means of Trotter-Kato-type decomposition into deterministic and stochastic parts, we couple both of these dynamics via a discrete-in-time scheme, and establish its convergence to a non-negative weak martingale solution.

[1]  Oleksandr Misiats,et al.  Asymptotic behavior of stochastic functional differential evolution equation , 2023, Electronic Journal of Differential Equations.

[2]  Oleksandr Misiats,et al.  Strong solutions and asymptotic behavior of bidomain equations with random noise , 2021, Stochastics and Dynamics.

[3]  Oleksandr Misiats,et al.  Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients , 2021, Evolution Equations & Control Theory.

[4]  Gigliola Staffilani,et al.  Global solutions of aggregation equations and other flows with random diffusion , 2021, Probability Theory and Related Fields.

[5]  I. Topaloglu,et al.  On global existence and blowup of solutions of Stochastic Keller–Segel type equation , 2021, Nonlinear Differential Equations and Applications NoDEA.

[6]  Pavlo O. Kasyanov,et al.  Strong solutions and trajectory attractors to the thin-film equation with absorption , 2021 .

[7]  G. Grün,et al.  Non-negative Martingale Solutions to the Stochastic Thin-Film Equation with Nonlinear Gradient Noise , 2020, Archive for Rational Mechanics and Analysis.

[8]  N. Yip,et al.  Invariant measures for stochastic reaction–diffusion equations with weakly dissipative nonlinearities , 2020 .

[9]  B. Gess,et al.  The stochastic thin-film equation: Existence of nonnegative martingale solutions , 2019, Stochastic Processes and their Applications.

[10]  N. Yip,et al.  Asymptotic analysis and homogenization of invariant measures , 2019, Stochastics and Dynamics.

[11]  F. Cornalba A priori positivity of solutions to a non-conservative stochastic thin-film equation , 2018, 1811.07826.

[12]  Günther Grün,et al.  Existence of Positive Solutions to Stochastic Thin-Film Equations , 2018, SIAM J. Math. Anal..

[13]  M. Röckner,et al.  Stochastic Partial Differential Equations: An Introduction , 2015 .

[14]  N. Yip,et al.  Existence and Uniqueness of Invariant Measures for Stochastic Reaction–Diffusion Equations in Unbounded Domains , 2014, 1411.0298.

[15]  M. Hofmanová Degenerate parabolic stochastic partial differential equations , 2013 .

[16]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[17]  K. Mecke,et al.  Thin-Film Flow Influenced by Thermal Noise , 2006 .

[18]  B. Davidovitch,et al.  Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations. , 2005, Physical review letters.

[19]  Herbert Amann,et al.  Compact embeddings of vector valued Sobolev and Besov spaces , 2000 .

[20]  Mary C. Pugh,et al.  The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions , 1996 .

[21]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[22]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[23]  A. Skorokhod Random Linear Operators , 1983 .

[24]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[25]  Matthias Hieber,et al.  On the Bidomain equations driven by stochastic forces , 2020, Discrete & Continuous Dynamical Systems - A.

[26]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[27]  R. Manthey,et al.  Stochastic evolution equations in L2vp , 1999 .

[28]  A. Jakubowski,et al.  Short Communication:The Almost Sure Skorokhod Representation for Subsequences in Nonmetric Spaces , 1998 .

[29]  Francisco Bernis,et al.  Finite speed of propagation for thin viscous flows when 2 ≤ n ≤ 3 , 1996 .

[30]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .