Quantum superpositions and projective measurement in the lambda calculus

We propose an extension of simply typed lambda-calculus to handle some properties of quantum computing. The equiprobable quantum superposition is taken as a commutative pair and the quantum measurement as a non-deterministic projection over it. Destructive interferences are achieved by introducing an inverse symbol with respect to pairs. The no-cloning property is ensured by using a combination of syntactic linearity with linear logic. Indeed, the syntactic linearity is enough for unitary gates, while a function measuring its argument needs to enforce that the argument is used only once.

[1]  Lionel Vaux The algebraic lambda calculus , 2009, Math. Struct. Comput. Sci..

[2]  Margherita Zorzi,et al.  On quantum lambda calculi: a foundational perspective , 2014, Mathematical Structures in Computer Science.

[3]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[4]  Pablo Arrighi,et al.  A System F accounting for scalars , 2009, 0903.3741.

[5]  Jonathan Grattage A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[7]  G. Jaeger,et al.  Quantum Information: An Overview , 2006 .

[8]  Benoît Valiron,et al.  The Vectorial Lambda-Calculus , 2013, ArXiv.

[9]  Mark E. Stickel,et al.  Complete Sets of Reductions for Some Equational Theories , 1981, JACM.

[10]  Michele Pagani,et al.  Applying quantitative semantics to higher-order quantum computing , 2013, POPL.

[11]  Alejandro Díaz-Caro,et al.  Linearity in the Non-deterministic Call-by-Value Setting , 2012, WoLLIC.

[12]  Pablo Arrighi Linear-algebraic λ-calculus: higher-order, encodings, and confluence , 2006 .

[13]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[14]  Richard Statman,et al.  Lambda Calculus with Types , 2013, Perspectives in logic.

[15]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[16]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[17]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[18]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[19]  Simon Perdrix,et al.  Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus , 2014, Log. Methods Comput. Sci..

[20]  Gilles Dowek,et al.  Simply Typed Lambda-Calculus Modulo Type Isomorphisms , 2015, ArXiv.

[21]  Benoît Valiron,et al.  The vectorial λ-calculus , 2017, Inf. Comput..

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[23]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.