On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment
暂无分享,去创建一个
[1] É. Taillard. COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .
[2] Hisao Ishibuchi,et al. A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.
[3] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[4] Peter J. Fleming,et al. An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.
[5] David Corne,et al. A comparison of diverse approaches to memetic multiobjective combinatorial optimization , 2000 .
[6] Emile H. L. Aarts,et al. Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.
[7] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[8] Fred W. Glover,et al. Tabu Search - Part I , 1989, INFORMS J. Comput..
[9] M. Hansen,et al. Evaluating the quality of approximations to the non-dominated set , 1998 .
[10] E. L. Ulungu,et al. MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .
[11] Joshua D. Knowles,et al. M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[12] Andrzej Jaszkiewicz,et al. Genetic local search for multi-objective combinatorial optimization , 2022 .
[13] Zbigniew Michalewicz,et al. Genetic Algorithms for the 0/1 Knapsack Problem , 1994, ISMIS.
[14] Michael Pilegaard Hansen. Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.
[15] David E. Goldberg,et al. A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[16] Arnaud Fréville,et al. Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.
[17] D. Ackley. A connectionist machine for genetic hillclimbing , 1987 .
[18] Jin-Kao Hao,et al. Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..
[19] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[20] Piotr Czyzżak,et al. Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .
[21] Prabhat Hajela,et al. Genetic search strategies in multicriterion optimal design , 1991 .
[22] B. Freisleben,et al. Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[23] Peter J. Fleming,et al. On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.
[24] Fred Glover,et al. Tabu Search - Part II , 1989, INFORMS J. Comput..
[25] Howard Kaufman,et al. An Experimental Investigation of Process Identification by Competitive Evolution , 1967, IEEE Trans. Syst. Sci. Cybern..
[26] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[27] Marc Despontin,et al. Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .
[28] Andrzej Jaszkiewicz. Comparison of local search-based metaheuristics on the multiple objective knapsack problem , 2001 .