On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment

Multiple-objective metaheuristics, e.g., multiple-objective evolutionary algorithms, constitute one of the most active fields of multiple-objective optimization. Since 1985, a significant number of different methods have been proposed. However, only few comparative studies of the methods were performed on large-scale problems. We continue two comparative experiments on the multiple-objective 0/1 knapsack problem reported in the literature. We compare the performance of two multiple-objective genetic local search (MOGLS) algorithms to the best performers in the previous experiments using the same test instances. The results of our experiment indicate that our MOGLS algorithm generates better approximations to the nondominated set in the same number of functions evaluations than the other algorithms.

[1]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[2]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[3]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[4]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[5]  David Corne,et al.  A comparison of diverse approaches to memetic multiobjective combinatorial optimization , 2000 .

[6]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[7]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[8]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[9]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[10]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[11]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[12]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms for the 0/1 Knapsack Problem , 1994, ISMIS.

[14]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[15]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.

[17]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[18]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[21]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[22]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[23]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[24]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[25]  Howard Kaufman,et al.  An Experimental Investigation of Process Identification by Competitive Evolution , 1967, IEEE Trans. Syst. Sci. Cybern..

[26]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[27]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[28]  Andrzej Jaszkiewicz Comparison of local search-based metaheuristics on the multiple objective knapsack problem , 2001 .