Structural dependence of threshold displacement energies in rutile, anatase and brookite TiO2

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R S Pease,et al.  REVIEW ARTICLES: The Displacement of Atoms in Solids by Radiation , 1955 .

[3]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[4]  A. E. Ringwood,et al.  Immobilisation of high level nuclear reactor wastes in SYNROC , 1979, Nature.

[5]  D. D. Richardson Computer simulation of threshold radiation damage in rutile, Tio2 , 1983 .

[6]  J. Ziegler The stopping and range of ions in solids vol 1 : The stopping and ranges of ions in matter , 2013 .

[7]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[8]  E. Buck Effects of electron irradiation of rutile , 1995 .

[9]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[10]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[11]  Lorenzo Malerba,et al.  Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach , 2004 .

[12]  B. Uberuaga,et al.  Dynamical simulations of radiation damage in magnesium aluminate spinel, MgAl2O4 , 2005 .

[13]  N. Marks,et al.  Threshold displacement energies in rutile TiO2: A molecular dynamics simulation study , 2005 .

[14]  Katherine L. Smith,et al.  The displacement energies of cations in perovskite (CaTiO3) , 2005 .

[15]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[16]  J. Wallenius,et al.  Molecular dynamics simulations of threshold displacement energies in Fe , 2006 .

[17]  N. Marks,et al.  Defects and threshold displacement energies in SrTiO3 perovskite using atomistic computer simulations , 2007 .

[18]  Graeme Henkelman,et al.  Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. , 2008, The Journal of chemical physics.

[19]  Y. Filinchuk,et al.  Tetrahedra system Cu4 OCl6 daca4: High-temperature manifold of molecular configurations governing low-temperature properties , 2008, 0801.1507.

[20]  Katherine L. Smith,et al.  Thermal spike recrystallisation: Molecular dynamics simulation of radiation damage in polymorphs of titania , 2008 .

[21]  Nigel A. Marks,et al.  Experimental and atomistic modeling study of ion irradiation damage in thin crystals of theTiO2polymorphs , 2008 .

[22]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[23]  B. Uberuaga,et al.  Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Normand Mousseau,et al.  Kinetic activation-relaxation technique. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Baenitz,et al.  Field-tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al NMR, and NQR investigations , 2012, 1210.0326.

[26]  N. Marks,et al.  Systematic calculation of threshold displacement energies: Case study in rutile , 2012 .

[27]  R. Stoller,et al.  Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  N. Marks,et al.  Density and structural effects in the radiation tolerance of TiO₂ polymorphs. , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.