Integrative taxonomy and evolutionary ecology of the anthophilous Drosophila lutzii species complex (Diptera, Drosophilidae) provide evidence for range expansion of Drosophila alei

Cryptic species represent a substantial fraction of the diversity of Drosophilidae, hampering studies on species ecologies and their evolution. Anthophilous species within the Drosophila lutzii group encompass some of the most widely distributed Neotropical lineages. Nevertheless, their ranges, ecologies, divergence times, and phylogenetic relationships are largely unknown. In this study, we analyzed the cryptic diversity of the lutzii species complex occurring in Southern Brazil and shed light on the ecological and evolutionary processes underlying their current patterns of coexistence. We used an integrative approach, evaluating molecular, ecological, and morphological traits under an evolutionary ecology framework. We documented the unexpected occurrence of D. alei in Southern Brazil, whose range was only known for the Andean region. Our phylogenetic analysis indicated that despite morphological similarities, D. alei is more closely related to D. denieri than to D. lutzii, and that divergence among these three species dates back to the Neogene (7.3 Mya). Niche modeling suggests that D. denieri and D. lutzii populations expanded their ranges and were established in Southern Brazil during the Quaternary (150 kya), being affected by similar paleoclimatic events. On the other hand, D. alei shows distinct abiotic requirements than D. denieri and D. lutzii, and environmental distribution models suggested a significant reduction in its suitable areas during the Quaternary, especially in Southern Brazil. This suggests that the current sympatry observed in this region likely reflects a secondary contact between the three species resulting from niche divergence processes. Altogether, these results advance the understanding of the distribution and phylogenetic relationships of Neotropical anthophilous Drosophila, revealing the interplay between ecological and historical factors in their speciation.

[1]  Stela Machado,et al.  Unveiling the Mycodrosophila projectans (Diptera, Drosophilidae) species complex: Insights into the evolution of three Neotropical cryptic and syntopic species , 2022, PloS one.

[2]  L. León‐Paniagua,et al.  Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? , 2021, Journal of Mammalogy.

[3]  M. Turelli,et al.  ENMTools 1.0: an R package for comparative ecological biogeography , 2021, Ecography.

[4]  L. J. Robe,et al.  Phylogeographic analyses and taxonomic inconsistencies of the Neotropical annual fish Austrolebias minuano, Austrolebias charrua and Austrolebias pongondo (Cyprinodontiformes: Rivulidae) , 2020, Environmental Biology of Fishes.

[5]  G. Ortí,et al.  Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. , 2020, Systematic biology.

[6]  Jeferson Vizentin‐Bugoni,et al.  High niche partitioning promotes highly specialized, modular and non‐nested florivore–plant networks across spatial scales and reveals drivers of specialization , 2020 .

[7]  H. Cornell Niche Overlap , 2019, Competition and the Structure of Bird Communities. (MPB-7), Volume 7.

[8]  P. A. Baker,et al.  Paleoclimate of the subtropical Andes during the latest Miocene, Lauca Basin, Chile , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[9]  Juan Antonio Baeza,et al.  An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’ shrimpLysmata wurdemanni sensu stricto , 2019, Zoological Journal of the Linnean Society.

[10]  F. R. Santos,et al.  Cryptic diversity in Brazilian endemic monkey frogs (Hylidae, Phyllomedusinae, Pithecopus) revealed by multispecies coalescent and integrative approaches. , 2019, Molecular phylogenetics and evolution.

[11]  T. Markow Host use and host shifts in Drosophila. , 2019, Current opinion in insect science.

[12]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[13]  M. Méndez,et al.  Hidden and cryptic species reflect parallel and correlated evolution in the phylogeny of the genus Callyntra (Coleoptera: Tenebrionidae) of Central Chile. , 2018, Molecular phylogenetics and evolution.

[14]  A. Percequillo,et al.  Systematics of the genus Oecomys (Sigmodontinae: Oryzomyini): molecular phylogenetic, cytogenetic and morphological approaches reveal cryptic species , 2018 .

[15]  V. Valente,et al.  The flower flies and the unknown diversity of Drosophilidae (Diptera): a biodiversity inventory in the Brazilian fauna , 2018, bioRxiv.

[16]  M. Loureiro,et al.  Phylogeography of the critically endangered neotropical annual fish, Austrolebias wolterstorffi (Cyprinodontiformes: Aplocheilidae): genetic and morphometric evidence of a new species complex , 2018, Environmental Biology of Fishes.

[17]  C. R. Vilela,et al.  A new Costa Rican species of Drosophila visiting inflorescences of the hemi-epiphytic climber Monstera lentii (Araceae) , 2018, Revista Brasileira de Entomologia.

[18]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[19]  L. H. Liow,et al.  Finding Evolutionary Processes Hidden in Cryptic Species. , 2017, Trends in Ecology & Evolution.

[20]  S. Carranza,et al.  Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae) from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach , 2017, PloS one.

[21]  E. Loreto,et al.  Cryptic diversity and speciation in the Zygothrica genus group (Diptera, Drosophilidae): the case of Z. vittimaculosa Wiedemann , 2017 .

[22]  E. Loreto,et al.  Neotropical mycophagous drosophilids (Diptera: Drosophilidae): DNA barcoding as a way of overcoming the taxonomic impediment , 2017 .

[23]  J. Lachaud,et al.  Uncovering species boundaries in the Neotropical ant complex Ectatomma ruidum (Ectatomminae) under the presence of nuclear mitochondrial paralogues , 2016 .

[24]  M. Toda,et al.  Phylogeography of the Subgenus Drosophila (Diptera: Drosophilidae): Evolutionary History of Faunal Divergence between the Old and the New Worlds , 2016, PloS one.

[25]  A. Yassin Unresolved questions in genitalia coevolution: bridging taxonomy, speciation, and developmental genetics , 2016, Organisms Diversity & Evolution.

[26]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[27]  F. James Rohlf,et al.  The tps series of software , 2015 .

[28]  N. Gotelli,et al.  EcoSim: Null models software for ecology , 2015 .

[29]  R. P. Mateus,et al.  Demographic Structure and Evolutionary History of Drosophila ornatifrons (Diptera, Drosophilidae) from Atlantic Forest of Southern Brazil , 2015, Zoological science.

[30]  E. Loreto,et al.  Brazilian populations of Drosophila maculifrons (Diptera: Drosophilidae): low diversity levels and signals of a population expansion after the Last Glacial Maximum , 2014 .

[31]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[32]  Paul D N Hebert,et al.  DNA barcode-based delineation of putative species: efficient start for taxonomic workflows , 2014, Molecular ecology resources.

[33]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[34]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[35]  Philip L. Gibbard,et al.  The ICS International Chronostratigraphic Chart , 2013 .

[36]  A. Yassin Phylogenetic classification of the Drosophilidae Rondani (Diptera): the role of morphology in the postgenomic era , 2013 .

[37]  D. Adams,et al.  geomorph: an r package for the collection and analysis of geometric morphometric shape data , 2013 .

[38]  F. Franco,et al.  Recent demographic history of cactophilic Drosophila species can be related to Quaternary palaeoclimatic changes in South America , 2013 .

[39]  A. J. Crawford,et al.  DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations , 2012, Molecular ecology resources.

[40]  T. Savić,et al.  Mating success and wing morphometry in Drosophila melanogaster after long-term rearing on different diets , 2013 .

[41]  M. Schrödl,et al.  Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs , 2012, BMC Evolutionary Biology.

[42]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[43]  A. Lambert,et al.  ABGD, Automatic Barcode Gap Discovery for primary species delimitation , 2012, Molecular ecology.

[44]  V. Rull Neotropical biodiversity: timing and potential drivers. , 2011, Trends in ecology & evolution.

[45]  C. Klingenberg MorphoJ: an integrated software package for geometric morphometrics , 2011, Molecular ecology resources.

[46]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[47]  T. Stadler,et al.  Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity , 2010, Science.

[48]  V. Valente,et al.  Radiation of the ,,Drosophila“ subgenus (Drosophilidae, Diptera) in the Neotropics , 2010 .

[49]  Topi K. Lehtonen,et al.  Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  S. Montgomery,et al.  New Immigrant Drosophilidae in Hawaii, and a Checklist of the Established Immigrant Species , 2009 .

[51]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[52]  T. Markow,et al.  Reproductive ecology of Drosophila , 2008 .

[53]  F. Sene,et al.  SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY Phenotypic Variation of the Aedeagus of Drosophila serido Vilela & Sene (Diptera: Drosophilidae) , 2008 .

[54]  V. Rull Speciation timing and neotropical biodiversity: the Tertiary–Quaternary debate in the light of molecular phylogenetic evidence , 2008, Molecular ecology.

[55]  Miguel B. Araújo,et al.  Quaternary climate changes explain diversity among reptiles and amphibians , 2008 .

[56]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[57]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[58]  F. Sene,et al.  Aedeagus morphology as a discriminant marker in two closely related cactophilic species of Drosophila (Diptera; Drosophilidae) in South America. , 2006, Anais da Academia Brasileira de Ciencias.

[59]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[60]  P. Hebert,et al.  The promise of DNA barcoding for taxonomy. , 2005, Systematic biology.

[61]  S. Escher,et al.  The Drosophilidae (Diptera) of Fennoscandia and Denmark , 2005 .

[62]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[63]  Dario Leister,et al.  NUMTs in sequenced eukaryotic genomes. , 2004, Molecular biology and evolution.

[64]  G. N.,et al.  Morphological analysis of male mating organ in the Drosophila virilis species group : a multivariate approach , 2004 .

[65]  G. Bächli,et al.  Two new north american Drosophila species (Diptera: Drosophilidae) , 2002 .

[66]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[67]  V. Valente,et al.  PRELIMINARY DATA ON THE DROSOPHILA SPECIES (DIPTERA, DROSOPHILIDAE) FROM URUGUAY , 1998 .

[68]  Y. Fu,et al.  Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. , 1997, Genetics.

[69]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[70]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[71]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[72]  G. Bächli,et al.  Taxonomic studies on Neotropical species of seven genera of Drosophilidae (Diptera). , 1990 .

[73]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[74]  H. Akaike A new look at the statistical model identification , 1974 .

[75]  D. Brncic ECOLOGICAL AND CYTOGENETIC STUDIES OF DROSOPHILA FLAVOPILOSA, A NEOTROPICAL SPECIES LIVING IN CESTRUM FLOWERS , 1966, Evolution; international journal of organic evolution.

[76]  R. G. The North American Species of Drosophila , 1921, Nature.

[77]  A. Sturtevant Notes on North American Drosophilidae with Descriptions of Twenty-Three New Species. , 1916 .