Rapid fabrication of MOF-based mixed matrix membranes through digital light processing

3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision.

[1]  J. Hazemann,et al.  Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO2 to Methanol , 2020 .

[2]  J. Gascón,et al.  Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. , 2020, Chemical reviews.

[3]  H. Shon,et al.  3D printing for membrane separation, desalination and water treatment , 2020, Applied Materials Today.

[4]  Kazuyoshi Kanamori,et al.  Formulation of Metal-Organic Framework Inks for the 3D Printing of Robust Microporous Solids Towards High-Pressure Gas Storage and Separation. , 2020, ACS applied materials & interfaces.

[5]  Jie Yang,et al.  Metal-Organic Frameworks for Biomedical Applications. , 2020, Small.

[6]  Abbas S. Milani,et al.  3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. , 2020, ACS nano.

[7]  Weidou Zhu,et al.  3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. , 2019, ACS applied materials & interfaces.

[8]  Zhiyuan Xiong,et al.  Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor , 2019, RSC Advances.

[9]  G. T. Palomino,et al.  Metal–organic framework mixed-matrix coatings on 3D printed devices , 2019, Applied Materials Today.

[10]  Won‐Tae Koo,et al.  Metal-Organic Frameworks for Chemiresistive Sensors , 2019, Chem.

[11]  S. Mullens,et al.  3D-Printed Zeolitic Imidazolate Framework Structures for Adsorptive Separations , 2019, ACS Applied Nano Materials.

[12]  J. Ding,et al.  3D-Printing of Pure Metal–Organic Framework Monoliths , 2019, ACS Materials Letters.

[13]  M. Hartings,et al.  Chemistry from 3D printed objects , 2019, Nature Reviews Chemistry.

[14]  F. Kleitz,et al.  Direct ink writing of catalytically active UiO-66 polymer composites. , 2019, Chemical communications.

[15]  E. Hey‐Hawkins,et al.  Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix. , 2019, ChemPlusChem.

[16]  Peng Pei,et al.  3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery , 2018, Microporous and Mesoporous Materials.

[17]  Aji P. Mathew,et al.  CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks , 2018, Advanced Functional Materials.

[18]  John Wang,et al.  3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O2 Batteries , 2018, Advanced Functional Materials.

[19]  F. Rezaei,et al.  Adsorption of Ethane and Ethylene over 3D-Printed Ethane-Selective Monoliths , 2018, ACS Sustainable Chemistry & Engineering.

[20]  E. Sudhölter,et al.  Nanosheets of Nonlayered Aluminum Metal–Organic Frameworks through a Surfactant‐Assisted Method , 2018, Advanced materials.

[21]  A. Kashani,et al.  Additive manufacturing (3D printing): A review of materials, methods, applications and challenges , 2018, Composites Part B: Engineering.

[22]  J. Knox,et al.  UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO2/CH4, CO2/N2, and CO2/H2 Separation. , 2018, ACS applied materials & interfaces.

[23]  BibleMichael,et al.  3D-Printed Acrylonitrile Butadiene Styrene-Metal Organic Framework Composite Materials and Their Gas Storage Properties , 2018 .

[24]  Pooi See Lee,et al.  Hydrolytically Stable MOF in 3D‐Printed Structures , 2018 .

[25]  Abigail E. Miller,et al.  Toward 3D Printed Hydrogen Storage Materials Made with ABS-MOF Composites. , 2018, Polymers for advanced technologies.

[26]  Satish K. Nune,et al.  Chemically Active, Porous 3D-Printed Thermoplastic Composites. , 2018, ACS applied materials & interfaces.

[27]  S. Kuhn,et al.  3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. , 2018, Chemical Society reviews.

[28]  F. Rezaei,et al.  3D-Printed Metal-Organic Framework Monoliths for Gas Adsorption Processes. , 2017, ACS applied materials & interfaces.

[29]  J. Gascón,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[30]  R. Mülhaupt,et al.  Polymers for 3D Printing and Customized Additive Manufacturing , 2017, Chemical reviews.

[31]  Chang‐jun Liu,et al.  Three‐dimensional Printing for Catalytic Applications: Current Status and Perspectives , 2017 .

[32]  K. Pal,et al.  Dynamic Mechanical Analysis of Clay–Polymer Nanocomposites , 2017 .

[33]  N. Hilal,et al.  Mechanical Characterization of Membranes , 2017 .

[34]  J. Lewis,et al.  Printing soft matter in three dimensions , 2016, Nature.

[35]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[36]  Freek Kapteijn,et al.  Multi-scale crystal engineering of metal organic frameworks , 2016 .

[37]  Márcio Talhavini,et al.  Inkjet Printing of Lanthanide-Organic Frameworks for Anti-Counterfeiting Applications. , 2015, ACS applied materials & interfaces.

[38]  F. Kapteijn,et al.  Anchoring of Diphenylphosphinyl Groups to NH2‐MIL‐53 by Post‐Synthetic Modification , 2015 .

[39]  Xiao Feng,et al.  Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. , 2015, Angewandte Chemie.

[40]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[41]  G. Cao,et al.  Study of the anomalous sorption behavior of CO2 into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM). , 2013, Langmuir : the ACS journal of surfaces and colloids.

[42]  A. Terfort,et al.  Patterned Deposition of Metal‐Organic Frameworks onto Plastic, Paper, and Textile Substrates by Inkjet Printing of a Precursor Solution , 2013, Advanced materials.

[43]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[44]  Lujie Cao,et al.  A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. , 2013, Chemical communications.

[45]  E. Chen,et al.  Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation , 2013 .

[46]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[47]  C. Serre,et al.  Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations , 2012 .

[48]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[49]  K. Lillerud,et al.  Post-synthetic modification of the metal–organic framework compound UiO-66 , 2010 .

[50]  B. Freeman,et al.  Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results , 2010 .

[51]  F. Taulelle,et al.  The extra-framework sub-lattice of the metal-organic framework MIL-110: a solid-state NMR investigation. , 2009, Chemistry.

[52]  Tai‐Shung Chung,et al.  Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future , 2009 .

[53]  L. Robeson,et al.  The upper bound revisited , 2008 .

[54]  D. Tomasko,et al.  CO2-Induced PMMA Swelling and Multiple Thermodynamic Property Analysis Using Sanchez−Lacombe EOS , 2005 .

[55]  M. Morbidelli,et al.  Simultaneous Measurement of Swelling and Sorption in a Supercritical CO2−Poly(methyl methacrylate) System , 2005 .

[56]  Mark L. Stone,et al.  Testing Of Polymer Membranes For The Selective Permeability Of Hydrogen , 2003 .

[57]  T. Barbari,et al.  A thermodynamic analysis of gas sorption-desorption hysteresis in glassy polymers , 1993 .

[58]  E. Gulari,et al.  Raman and FTIR spectroscopy of polymerization: bulk polymerization of methyl methacrylate and styrene , 1984 .