Flexible uniplanar Artificial Magnetic Conductor

A flexible uniplanar Artificial Magnetic Conductor (AMC) design is presented. FEM simulations used to design and analyze the performance of the AMC structure are shown. Its performance under flat and bent conditions is characterized by means of reflection coefficient phase measurements of a manufactured prototype in an anechoic chamber. Broad AMC operation bandwidth and polarization angle independency is found for the prototype in both flat and bent situations. In addition, its angular margin under oblique incidence operation is also measured.

[1]  Sylvain Collardey,et al.  Dual-band Antenna for WLAN application with EBG , 2010 .

[2]  D. Werner,et al.  The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[3]  G. Manara,et al.  Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces , 2002, IEEE Antennas and Wireless Propagation Letters.

[4]  Rakhesh Singh Kshetrimayum,et al.  COMPACT WIDEBAND BANDPASS FILTER USING OPEN SLOT SPLIT RING RESONATOR AND CMRC , 2009 .

[5]  K. B. Thapa,et al.  DESIGN OF PHOTONIC BAND GAP FILTER , 2008 .

[6]  Majid Tayarani,et al.  Analysis and Design of Dual Band High Directive EBG Resonator Antenna Using Square Loop FSS as Superstrate Layer , 2007 .

[7]  Shaobo Qu,et al.  ELECTRICALLY SMALL ANTENNA INSPIRED BY SPIRED SPLIT RING RESONATOR , 2009 .

[8]  Xin Hu,et al.  Compact Dual-Band Rejection Filter Based on Complementary Meander Line Split Ring Resonator , 2009 .

[9]  Xing Wang,et al.  SCATTERING ANALYSIS OF A PRINTED DIPOLE ANTENNA USING PBG STRUCTURES , 2008 .

[10]  F. Las-Heras,et al.  Planar Artificial Magnetic Conductor: Design and Characterization Setup in the RFID SHF Band , 2009 .

[11]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[12]  Yong-Chang Jiao,et al.  A NOVEL MULTI-BAND ELECTROMAGNETIC BAND- GAP STRUCTURE , 2009 .

[13]  R. Langley,et al.  Dual-Band Wearable Textile Antenna on an EBG Substrate , 2009, IEEE Transactions on Antennas and Propagation.

[14]  N. Engheta,et al.  Thin absorbing screens using metamaterial surfaces , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[15]  Tatsuo Itoh,et al.  A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit , 1999 .

[16]  Eva Rajo-Iglesias,et al.  BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES , 2009 .

[17]  F. Las-Heras,et al.  Novel SHF-Band Uniplanar Artificial Magnetic Conductor , 2010, IEEE Antennas and Wireless Propagation Letters.

[18]  Mir Mojtaba Mirsalehi,et al.  COMPACT AND WIDEBAND 1-D MUSHROOM-LIKE EBG FILTERS , 2008 .

[19]  Sergei A. Tretyakov,et al.  GROUNDED UNIAXIAL MATERIAL SLABS AS MAGNETIC CONDUCTORS , 2008, 0811.3493.

[20]  M. Kivikoski,et al.  WEBGA - wearable electromagnetic band-gap antenna , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[21]  Fan Yang,et al.  Electromagnetic Band Gap Structures in Antenna Engineering , 2008 .

[22]  Ke Wu,et al.  Spatial power amplifier using a passive and active TEM waveguide concept , 2003 .

[23]  A. Hoorfar,et al.  Small dipole-antenna near Peano high-impedance surfaces , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[24]  Mehdi Hosseini,et al.  A Novel Circularly Polarized Antenna Based on an Artificial Ground Plane , 2008 .

[25]  Yahya Rahmat-Samii,et al.  Textile antennas: effects of antenna bending on input matching and impedance bandwidth , 2006, IEEE Aerospace and Electronic Systems Magazine.

[26]  Michael J. Withford,et al.  Prototyping dual-band artificial magnetic conductors with laser micromachining , 2006 .

[27]  F. Las Heras,et al.  Design of Planar Artificial Magnetic Conductor Ground Plane Using Frequency-Selective Surfaces for Frequencies Below 1 GHz , 2009, IEEE Antennas and Wireless Propagation Letters.

[28]  N. Engheta,et al.  High impedance metamaterial surfaces using Hilbert-curve inclusions , 2004, IEEE Microwave and Wireless Components Letters.

[29]  Gonul Turhan-Sayan,et al.  COMPARATIVE INVESTIGATION OF RESONANCE CHARACTERISTICS AND ELECTRICAL SIZE OF THE DOUBLE-SIDED SRR, BC-SRR AND CONVENTIONAL SRR TYPE METAMATERIALS FOR VARYING SUBSTRATE PARAMETERS , 2009 .

[30]  L. Akhoondzadeh-Asl,et al.  Wideband Dipoles on Electromagnetic Bandgap Ground Planes , 2007 .

[31]  Abdelhamid A. Shaalan,et al.  STUDY THE EFFECTS OF ELECTROMAGNETIC BAND-GAP (EBG) SUBSTRATE ON TWO PATCH MICROSTRIP ANTENNA , 2008 .

[32]  Heung-Sik Tae,et al.  Comparative Study on Various Artficial Magnetic Conductors for Low-Profile Antenna , 2006 .

[33]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[34]  Bing-Hao Zeng,et al.  COMPLEMENTARY SPLIT RING RESONATORS WITH DUAL MESH-SHAPED COUPLINGS AND DEFECTED GROUND STRUCTURES FOR WIDE PASS-BAND AND STOP-BAND BPF DESIGN , 2009 .

[35]  Y. Rahmat-Samii,et al.  Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications , 2003 .

[36]  Lauri Sydanheimo,et al.  A low-cost 2.45 GHz photonic band-gap patch antenna for wearable systems , 2001 .

[37]  Atef Z. Elsherbeni,et al.  COMPACT ARTIFICIAL MAGNETIC CONDUCTOR DESIGNS USING PLANAR SQUARE SPIRAL GEOMETRIES , 2007 .

[38]  Sylvain Collardey,et al.  Dual-band CPW-fed G-antenna using an EBG structure , 2010, 2010 Loughborough Antennas & Propagation Conference.

[39]  Sant Prasad Ojha,et al.  DESIGN OF A TUNABLE POLARIZER USING A ONE-DIMENSIONAL NANO SIZED PHOTONIC BANDGAP STRUCTURE , 2008 .

[40]  Nai-Chang Yuan,et al.  HIGH IMPEDANCE GROUND PLANE (HIGP) INCORPORATED WITH RESISTANCE FOR RADAR CROSS SECTION (RCS) REDUCTION OF ANTENNA , 2008 .

[41]  J. Papapolymerou,et al.  A Duroid-based planar EBG cavity resonator filter with improved quality factor , 2002, IEEE Antennas and Wireless Propagation Letters.

[42]  K. Sarabandi,et al.  Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate , 2004, IEEE Transactions on Antennas and Propagation.

[43]  Lara Pajewski,et al.  Enhancement of Directivity Using 2D-Electromagnetic Crystals Near the Band-Gap Edge: a Full-Wave Approach , 2008 .

[44]  H. Yang,et al.  Radiation Characteristics of a Microstrip Patch Over an Electromagnetic Bandgap Surface , 2007, IEEE Transactions on Antennas and Propagation.