The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric

The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance.) The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries. The canonical code represents a class of 41,472 codes with equivalent symmetries; a single class among an astronomical number of symmetry classes comprising all possible codes.

[1]  Fernando Antoneli,et al.  Symmetry breaking in the genetic code: Finite groups , 2011, Math. Comput. Model..

[2]  Romeu Cardoso Guimarães,et al.  Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids , 2014, Life.

[3]  S. Freeland,et al.  The Case for an Error Minimizing Standard Genetic Code , 2003, Origins of life and evolution of the biosphere.

[4]  Manfred Eigen From Strange Simplicity to Complex Familiarity: A Treatise on Matter, Information, Life and Thought , 2013 .

[5]  E N Trifonov,et al.  Consensus temporal order of amino acids and evolution of the triplet code. , 2000, Gene.

[6]  V. I. Shcherbak,et al.  Arithmetic inside the universal genetic code. , 2003, Bio Systems.

[7]  M Di Giulio The Coevolution Theory of the Origin of the Genetic Code , 1999, Journal of molecular evolution.

[8]  M. Chiani Error Detecting and Error Correcting Codes , 2012 .

[9]  Tsvi Tlusty,et al.  A colorful origin for the genetic code: Information theory, statistical mechanics and the emergence of molecular codes , 2010, Physics of life reviews.

[10]  H. Weyl Permutation Groups , 2022 .

[11]  V. de Crécy-Lagard,et al.  Deciphering synonymous codons in the three domains of life: Co‐evolution with specific tRNA modification enzymes , 2010, FEBS letters.

[12]  Sergei V. Petoukhov,et al.  Genetic code, hamming distance and stochastic matrices , 2004, Bulletin of mathematical biology.

[13]  P. S. Aleksandrov,et al.  An introduction to the theory of groups , 1960 .

[14]  S. Rodin,et al.  On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases , 2008, Heredity.

[15]  F. H. C. CRICK,et al.  Origin of the Genetic Code , 1967, Nature.

[16]  A Sequential “2-1-3” Model of Genetic Code Evolution That Explains Codon Constraints , 2006, Journal of Molecular Evolution.

[17]  R. Steinberg FINITE REFLECTION GROUPS , 1959 .

[18]  R. Sanchez,et al.  A genetic code Boolean structure. I. The meaning of Boolean deductions , 2005, Bulletin of mathematical biology.

[19]  A. Sciarrino,et al.  A minimum principle in codon-anticodon interaction , 2012, Biosyst..

[20]  G. L. Findley,et al.  Symmetry characteristics of the genetic code. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[22]  J. Lehmann,et al.  Physico-chemical constraints connected with the coding properties of the genetic system. , 2000, Journal of theoretical biology.

[23]  J. Bashford,et al.  A supersymmetric model for the evolution of the genetic code. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Tzipe Govezensky,et al.  An Extended RNA Code and its Relationship to the Standard Genetic Code: An Algebraic and Geometrical Approach , 2007, Bulletin of mathematical biology.

[25]  The coevolution theory of the origin of the genetic code , 2004 .

[26]  V. Stefanov,et al.  Topological nature of the genetic code. , 2001, Journal of theoretical biology.

[27]  R. Sanchez,et al.  A novel Lie algebra of the genetic code over the Galois field of four DNA bases. , 2005, Mathematical biosciences.

[28]  V. Chechetkin,et al.  Block structure and stability of the genetic code. , 2003, Journal of theoretical biology.

[29]  Peter D. Jarvis,et al.  Spectroscopy of the genetic code , 2008 .

[30]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[31]  J. D. Bernal,et al.  “The Origins of Life” , 1957, Nature.

[32]  Miguel A. Jiménez-Montaño,et al.  The fourfold way of the genetic code , 2009, Biosyst..

[33]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[34]  J. Jungck,et al.  Group graph of the genetic code. , 1979, The Journal of heredity.

[35]  John R. Jungck,et al.  GENETIC CODES AS CODES: TOWARDS A THEORETICAL BASIS FOR BIOINFORMATICS , 2009 .

[36]  Norman Biggs,et al.  Combinatorics and Graph Theory , 2007 .

[37]  J. Wong,et al.  Coevolution theory of the genetic code at age thirty. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  T Pöschel,et al.  The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro. , 2002, Bio Systems.

[39]  Eugene V Koonin,et al.  Origin and evolution of the genetic code: The universal enigma , 2008, IUBMB life.

[40]  Hao Liu,et al.  ERROR-CORRECTING CODES AND FINITE FIELDS , 2012 .

[41]  R. Liboff Primer for Point and Space Groups , 2003 .

[42]  C. Soulé,et al.  Symmetries by base substitutions in the genetic code predict 2(') or 3(') aminoacylation of tRNAs. , 2007, Journal of theoretical biology.

[43]  J. Hornos,et al.  ON AMINO ACID AND CODON ASSIGNMENT IN ALGEBRAIC MODELS FOR THE GENETIC CODE , 2010 .

[44]  Tanner Crowder,et al.  Studying Genetic Code by a Matrix Approach , 2010, Bulletin of mathematical biology.

[45]  Tsvi Tlusty,et al.  A model for the emergence of the genetic code as a transition in a noisy information channel , 2007, Journal of theoretical biology.

[46]  David R. Mazur Combinatorics: A Guided Tour , 2020 .

[47]  A tetrahedral representation of poly-codon sequences and a possible origin of codon degeneracy. , 1984, Journal of theoretical biology.

[48]  A. Sciarrino,et al.  Codon-anticodon interaction and the genetic code evolution , 2013, Biosyst..

[49]  T. Govezensky,et al.  Genetic Hotels for the Standard Genetic Code: Evolutionary Analysis Based upon Novel Three-Dimensional Algebraic Models , 2011, Bulletin of mathematical biology.

[50]  Marc Delarue,et al.  An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. , 2006, RNA.

[51]  Reijer Lenstra,et al.  Evolution of the genetic code through progressive symmetry breaking. , 2014, Journal of theoretical biology.

[52]  P. Sorba,et al.  A crystal base for the genetic code , 1998 .

[53]  S. A. Robertson,et al.  Polytopes and symmetry , 1984 .

[54]  José Santos,et al.  Study of the genetic code adaptability by means of a genetic algorithm. , 2010, Journal of theoretical biology.

[55]  C R Woese,et al.  Order in the genetic code. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Jean-Luc Jestin,et al.  Degeneracy in the genetic code and its symmetries by base substitutions. , 2003, Comptes rendus biologies.

[57]  Shmuel Raz,et al.  Fluctuating Asymmetry: Methods, Theory, and Applications , 2010, Symmetry.

[58]  C. Woese,et al.  On the fundamental nature and evolution of the genetic code. , 1966, Cold Spring Harbor symposia on quantitative biology.

[59]  C. T. Benson,et al.  Finite Reflection Groups , 1985 .

[60]  Symmetries of genetic code-doublets , 1975, Journal of Molecular Evolution.

[61]  Xin Wang,et al.  A 3D graphical representation of protein sequences based on the Gray code. , 2012, Journal of theoretical biology.

[62]  Endre Süli,et al.  Foundations of Computational Mathematics, Santander 2005 (London Mathematical Society Lecture Note Series) , 2006 .

[63]  Branko Dragovich,et al.  p-Adic Modelling of the Genome and the Genetic Code , 2007, Comput. J..

[64]  Hubert P. Yockey,et al.  Information theory, evolution and the origin of life , 2005, Inf. Sci..

[65]  L. Frappat,et al.  Crystalizing the Genetic Code , 2000, Journal of biological physics.

[66]  G. Ziegler Lectures on Polytopes , 1994 .

[67]  P. Higgs A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code , 2009, Biology Direct.

[68]  Stephen J. Freeland,et al.  Unearthing the Root of Amino Acid Similarity , 2013, Journal of Molecular Evolution.

[69]  P. Schimmel,et al.  Aminoacyl-tRNA synthetases: potential markers of genetic code development. , 2001, Trends in biochemical sciences.

[70]  L F Landweber,et al.  Selection, history and chemistry: the three faces of the genetic code. , 1999, Trends in biochemical sciences.

[71]  John R. Jungck,et al.  The genetic code as a periodic table , 1978, Journal of Molecular Evolution.

[72]  Wouter M. Koolen,et al.  Some Mathematical Refinements Concerning Error Minimization in the Genetic Code , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.