Parameterized Algorithms for MILPs with Small Treedepth

Solving (mixed) integer linear programs, (M)ILPs for short, is a fundamental optimization task. While hard in general, recent years have brought about vast progress for solving structurally restricted, (non-mixed) ILPs: $n$-fold, tree-fold, 2-stage stochastic and multi-stage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time $f(a,d) \textrm{poly}(n)$, where $a$ is the largest coefficient of the constraint matrix, $d$ is its treedepth, and $n$ is the number of variables. This is enabled by proving bounds on the denominators of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analyzing the inverses of invertible submatrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We trace the limiting boundary of our approach, showing that naturally related classes of linear programs have vertices of unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.

[1]  Sibel A. Alumur,et al.  Network hub location problems: The state of the art , 2008, Eur. J. Oper. Res..

[2]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[3]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[4]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[5]  Dongdong Ge,et al.  A Review of Piecewise Linearization Methods , 2013 .

[6]  Martin Koutecký,et al.  Scheduling meets n-fold integer programming , 2016, J. Sched..

[7]  Alexander V. Karzanov,et al.  Minimum 0-Extensions of Graph Metrics , 1998, Eur. J. Comb..

[8]  Stefan Kratsch,et al.  A Structural Approach to Kernels for ILPs: Treewidth and Total Unimodularity , 2015, ESA.

[9]  Martin Koutecký,et al.  A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs , 2018, ICALP.

[10]  Klaus Jansen,et al.  Empowering the Configuration-IP - New PTAS Results for Scheduling with Setups Times , 2018, ITCS.

[11]  Subbarao Kambhampati,et al.  Reviving Integer Programming Approaches for AI Planning: A Branch-and-Cut Framework , 2005, ICAPS.

[12]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[13]  Friedrich Eisenbrand,et al.  Faster Algorithms for Integer Programs with Block Structure , 2018, ICALP.

[14]  Xiaolei Ma,et al.  Vehicle Routing Problem , 2013 .

[15]  Robert Ganian,et al.  Unary Integer Linear Programming with Structural Restrictions , 2018, IJCAI.

[16]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[17]  Peter Rossmanith,et al.  A Faster Parameterized Algorithm for Treedepth , 2014, ICALP.

[18]  Robert Ganian,et al.  The Complexity Landscape of Decompositional Parameters for ILP , 2016, AAAI.

[19]  Raymond Hemmecke,et al.  On the positive sum property and the computation of Graver test sets , 2003, Math. Program..

[20]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[21]  Sylvain Guillemot,et al.  FPT algorithms for path-transversal and cycle-transversal problems , 2011, Discret. Optim..

[22]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[23]  Martin Koutecký,et al.  Voting and Bribing in Single-Exponential Time , 2018, STACS.

[24]  Raymond Hemmecke,et al.  Finiteness Theorems in Stochastic Integer Programming , 2007, Found. Comput. Math..

[25]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..

[26]  Lin Chen,et al.  Parameterized and Approximation Results for Scheduling with a Low Rank Processing Time Matrix , 2017, STACS.

[27]  Friedrich Eisenbrand,et al.  An Algorithmic Theory of Integer Programming , 2019, ArXiv.

[28]  Raymond Hemmecke,et al.  Graver basis and proximity techniques for block-structured separable convex integer minimization problems , 2012, Mathematical Programming.

[29]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[30]  Raymond Hemmecke,et al.  n-Fold integer programming in cubic time , 2011, Math. Program..

[31]  Lin Chen,et al.  Covering a tree with rooted subtrees - parameterized and approximation algorithms , 2018, SODA.

[32]  Marcin Pilipczuk,et al.  Experimental Evaluation of Parameterized Algorithms for Graph Separation Problems: Half-Integral Relaxations and Matroid-based Kernelization , 2018, ArXiv.

[33]  Dana S. Nau,et al.  On the Use of Integer Programming Models in AI Planning , 1999, IJCAI.

[34]  B. Kotnyek A generalization of totally unimodular and network matrices , 2002 .

[35]  Robert Ganian,et al.  Solving Integer Linear Programs with a Small Number of Global Variables and Constraints , 2017, IJCAI.

[36]  Yoichi Iwata,et al.  Half-integrality, LP-branching, and FPT Algorithms , 2013, SIAM journal on computing (Print).

[37]  Leslie E. Trotter,et al.  Properties of vertex packing and independence system polyhedra , 1974, Math. Program..

[38]  Robert Ganian,et al.  Going Beyond Primal Treewidth for (M)ILP , 2017, AAAI.

[39]  岩田 陽一,et al.  0/1/all CSPs, Half-Integral A-path Packing, and Linear-Time FPT Algorithms , 2018 .

[40]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[41]  Martin Koutecký,et al.  Combinatorial n-fold integer programming and applications , 2017, Mathematical Programming.

[42]  Yoichi Iwata,et al.  Half-integrality, LP-branching, and FPT Algorithms , 2016, SIAM J. Comput..

[43]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[44]  Piotr Faliszewski,et al.  Mixed Integer Programming with Convex/Concave Constraints: Fixed-Parameter Tractability and Applications to Multicovering and Voting , 2020, Theor. Comput. Sci..