Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization

We report that efficiently disentangled boron nitride nanotubes (BNNTs) can be obtained due to functionalization in an aqueous solution with a natural water-soluble polysaccharide, gum arabic (GA). An atomic force microscopy study showed excellent dispersion of GA-functionalized BNNTs in the aqueous phase. Fluorescent, ultraviolet, and infrared absorption spectroscopies revealed the strong interactions between GA and the sidewalls of BNNTs. Subsequently, several functional proteins were successfully immobilized onto the surfaces of GA-functionalized BNNTs via strong electrostatic interactions under suitable pH conditions.

[1]  C. Zhi,et al.  Nucleotide-assisted decoration of boron nitride nanotubes with semiconductor quantum dots endows valuable visible-light emission in aqueous solution , 2011 .

[2]  Arnaud Magrez,et al.  In vitro investigation of the cellular toxicity of boron nitride nanotubes. , 2011, ACS nano.

[3]  P. Kingshott,et al.  Highly Ordered Mixed Protein Patterns Over Large Areas from Self‐Assembly of Binary Colloids , 2011, Advanced materials.

[4]  C. Zhi,et al.  Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution. , 2011, ACS applied materials & interfaces.

[5]  Dong-Hwang Chen,et al.  Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent , 2010 .

[6]  G. Phillips,et al.  Electrostatic interaction and complex formation between gum arabic and bovine serum albumin. , 2010, Biomacromolecules.

[7]  N. Kotov,et al.  Inorganic Nanoparticles as Protein Mimics , 2010, Science.

[8]  A. Roque,et al.  Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies , 2010, Journal of molecular recognition : JMR.

[9]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[10]  C. Zhi,et al.  Isolation of individual boron nitride nanotubes via peptide wrapping. , 2010, Journal of the American Chemical Society.

[11]  Hui Liu,et al.  Graphene oxide as a matrix for enzyme immobilization. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  H. Espinosa‐Andrews,et al.  Determination of the gum Arabic-chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates , 2010 .

[13]  C. Zhi,et al.  Chemically activated boron nitride nanotubes. , 2009, Chemistry, an Asian journal.

[14]  Song Zhang,et al.  Protein chips and nanomaterials for application in tumor marker immunoassays. , 2009, Biosensors & bioelectronics.

[15]  Q. Cheng,et al.  Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging. , 2009, ACS applied materials & interfaces.

[16]  A. Cuschieri,et al.  Enhanced low voltage cell electropermeabilization by boron nitride nanotubes , 2009, Nanotechnology.

[17]  Zev J. Gartner,et al.  Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells , 2009, Journal of the American Chemical Society.

[18]  C. Zhi,et al.  DNA-mediated assembly of boron nitride nanotubes. , 2007, Chemistry - An Asian Journal.

[19]  F. Ducastelle,et al.  Optical properties of multiwall boron nitride nanotubes , 2007 .

[20]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[21]  DW Hutmacher,et al.  Concepts of scaffold-based tissue engineering—the rationale to use solid free-form fabrication techniques , 2007, Journal of cellular and molecular medicine.

[22]  Atula S. D. Sandanayaka,et al.  Donor–Acceptor Nanoensembles Based on Boron Nitride Nanotubes , 2007 .

[23]  K. Kurabayashi,et al.  Protein pattern assembly by active control of a triblock copolymer monolayer. , 2006, Nano letters.

[24]  C. Zhi,et al.  Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. , 2005, Angewandte Chemie.

[25]  C. Zhi,et al.  Immobilization of proteins on boron nitride nanotubes. , 2005, Journal of the American Chemical Society.

[26]  K. Jain The role of nanobiotechnology in drug discovery. , 2005, Drug discovery today.

[27]  C. Zhi,et al.  Perfectly dissolved boron nitride nanotubes due to polymer wrapping. , 2005, Journal of the American Chemical Society.

[28]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[29]  Z. Cui,et al.  Fractionation of Lysozyme and Chicken Egg Albumin Using Ultrafiltration with 30-kDa Commercial Membranes , 2005 .

[30]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Jonathan S Dordick,et al.  Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[32]  J. Nichols,et al.  BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3 , 2003, Cell.

[33]  A. Zettl,et al.  Packing C60 in Boron Nitride Nanotubes , 2003, Science.

[34]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[35]  Hui‐Ming Cheng,et al.  Boron nitride nanotubes filled with zirconium oxide nanorods , 2002 .

[36]  Ya‐Ping Sun,et al.  Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation , 2002 .

[37]  C. Mirkin,et al.  Protein Nanoarrays Generated By Dip-Pen Nanolithography , 2002, Science.

[38]  M. Gee,et al.  Zeta potentials of gum arabic stabilised oil in water emulsions , 1999 .

[39]  T. Ebbesen,et al.  Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. , 1999, Angewandte Chemie.

[40]  E. Nogales,et al.  Tubulin and microtubule structure , 1998 .

[41]  G. Phillips,et al.  A review of recent developments on the regulatory, structural and functional aspects of gum arabic. , 1997 .

[42]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[43]  S. Tsuneda,et al.  Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization , 1995 .

[44]  F. Flynn,et al.  Immunoglobulin light-chain immunoblots of urine proteins from patients with tubular and Bence-Jones proteinuria. , 1987, Clinica chimica acta; international journal of clinical chemistry.

[45]  R. E. Stephens,et al.  Microtubules: structure, chemistry, and function. , 1976, Physiological reviews.

[46]  E. Engvall,et al.  Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. , 1971, Immunochemistry.

[47]  R. Bandyopadhyaya,et al.  Stabilization of Individual Carbon Nanotubes in Aqueous Solutions , 2002 .