Low doses of N-methyl-D-aspartate antagonists in superficial laminae of medulla oblongata facilitate wind-up of convergent neurones

[1]  B. Sessle,et al.  Superficial and deep convergent nociceptive neurons are differentially affected by N-methyl-D-aspartate applied on the brainstem surface of the rat medullary dorsal horn , 2001, Neuroscience.

[2]  H. Schaible,et al.  Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia , 2000, Pain.

[3]  K. Hole,et al.  Dorsal horn NMDA receptor function is changed after peripheral inflammation , 1999, PAIN®.

[4]  S. Mokha,et al.  Orphanin FQ (nociceptin) modulates responses of trigeminal neurons evoked by excitatory amino acids and somatosensory stimuli, and blocks the substance P-induced facilitation of N-methyl-d-aspartate-evoked responses , 1999, Neuroscience.

[5]  D. Simone,et al.  Windup leads to characteristics of central sensitization , 1999, Pain.

[6]  G. Carmignoto,et al.  Nitric Oxide-Producing Islet Cells Modulate the Release of Sensory Neuropeptides in the Rat Substantia Gelatinosa , 1998, The Journal of Neuroscience.

[7]  F. Nagy,et al.  Nociceptive integration in the rat spinal cord: role of non‐linear membrane properties of deep dorsal horn neurons , 1998, The European journal of neuroscience.

[8]  C. Dualé,et al.  Morphine Administered in the Substantia Gelatinosa of the Spinal Trigeminal Nucleus Caudalis Inhibits Nociceptive Activities in the Spinal Trigeminal Nucleus Oralis , 1998, The Journal of Neuroscience.

[9]  G. Baranauskas,et al.  SENSITIZATION OF PAIN PATHWAYS IN THE SPINAL CORD: CELLULAR MECHANISMS , 1998, Progress in Neurobiology.

[10]  V. Pickel,et al.  The N-methyl-d-aspartate (NMDA) receptor is postsynaptic to substance P-containing axon terminals in the rat superficial dorsal horn , 1997, Brain Research.

[11]  J. Sandkühler,et al.  Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. , 1997, Journal of neurophysiology.

[12]  A. Woda,et al.  Effect of an NMDA receptor antagonist on the wind-up of neurons in the trigeminal oralis subnucleus , 1997, Brain Research.

[13]  A. Basbaum,et al.  NMDA-receptor regulation of substance P release from primary afferent nociceptors , 1997, Nature.

[14]  A. Woda,et al.  Effects of systemic morphine on the activity of convergent neurons of spinal trigeminal nucleus oralis in the rat. , 1996, European journal of pharmacology.

[15]  F. Nagy,et al.  Modulation of regenerative membrane properties by stimulation of metabotropic glutamate receptors in rat deep dorsal horn neurons. , 1996, Journal of neurophysiology.

[16]  S. Mokha,et al.  Opioids modulate N-methyl-D-aspartic acid (NMDA)-evoked responses of trigeminothalamic neurons. , 1996, Journal of neurophysiology.

[17]  C. Woolf Windup and central sensitization are not equivalent. , 1996, Pain.

[18]  A. Basbaum,et al.  Morphological characterization of substance P receptor‐immunoreactive neurons in the rat spinal cord and trigeminal nucleus caudalis , 1995, The Journal of comparative neurology.

[19]  B. Sessle,et al.  Effects of subcutaneous formalin on the activity of trigeminal brain stem nociceptive neurones in the rat. , 1995, Journal of neurophysiology.

[20]  L. Urbán,et al.  Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters , 1994, Trends in Neurosciences.

[21]  T. Kaneko,et al.  Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat , 1994, The Journal of comparative neurology.

[22]  M. Womack,et al.  Substance P elevates intracellular calcium in both neurons and glial cells from the dorsal horn of the spinal cord. , 1994, Journal of neurophysiology.

[23]  A. Dickenson,et al.  Bi-directional effects of intrathecal NMDA and substance P on rat dorsal horn neuronal responses , 1994, Neuroscience Letters.

[24]  T. Doubell,et al.  The pathophysiology of chronic pain — increased sensitivity to low threshold Aβ-fibre inputs , 1994, Current Opinion in Neurobiology.

[25]  R. Wenthold,et al.  Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  G. Gebhart,et al.  Characterization of the role of spinal n-methyl-d-aspartate receptors in thermal nociception in the rat , 1993, Neuroscience.

[27]  J. Sandkühler,et al.  Characteristics of propriospinal modulation of nociceptive lumbar spinal dorsal horn neurons in the cat , 1993, Neuroscience.

[28]  A I Basbaum,et al.  Peptides and the primary afferent nociceptor , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  W. Willis,et al.  Combined application of excitatory amino acids and substance P produces long-lasting changes in responses of primate spinothalamic tract neurons , 1993, Brain Research Reviews.

[30]  C. Woolf,et al.  Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro. , 1993, Journal of neurophysiology.

[31]  R. Miller,et al.  Tachykinins Potentiate N‐Methyl‐D‐Aspartate Responses in Acutely Isolated Neurons from the Dorsal Horn , 1993, Journal of neurochemistry.

[32]  R. Morris,et al.  An ultrastructural study of the binding of an α-d-galactose specific lectin fromGriffonia simplicifolia to trigeminal ganglion neurons and the trigeminal nucleus caudalis in the rat , 1993, Neuroscience.

[33]  C. Woolf,et al.  The role of neurokinin and N-methyl-d-aspartate receptors in synaptic transmission from capsaicin-sensitive primary afferents in the rat spinal cord in vitro , 1993, Neuroscience.

[34]  L. Sorkin,et al.  The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  R. Morris,et al.  The distribution of binding by isolectin I-B4 from Griffonia simplicifolia in the trigeminal ganglion and brainstem trigeminal nuclei in the rat , 1992, Neuroscience.

[36]  G. Gerber,et al.  Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in rat spinal dorsal horn , 1991, Brain Research.

[37]  T. Sugimoto,et al.  Difference in central projection of primary afferents innervating facial and intraoral structures in the rat , 1991, Experimental Neurology.

[38]  L. Kruger,et al.  Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers , 1990, Journal of neurocytology.

[39]  B. Sessle,et al.  Properties of nociceptive and non-nociceptive neurons in trigeminal subnucleus oralis of the rat , 1990, Brain Research.

[40]  C. Bladon,et al.  The involvement of neurokinin receptor subtypes in somatosensory processing in the superficial dorsal horn of the cat , 1990, Brain Research.

[41]  James W. Hu Response properties of nociceptive and non-nociceptive neurons in the rat's trigeminal subnucleus caudalis (medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls , 1990, Pain.

[42]  A. Dickenson,et al.  Differential effects of excitatory amino acid antagonists on dorsal horn nociceptive neurones in the rat , 1990, Brain Research.

[43]  J. McKenzie,et al.  GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord , 1989, Neuroscience.

[44]  G. Gerber,et al.  Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in the rat spinal dorsal horn in vitro , 1989, Neuroscience Letters.

[45]  G. Bennett,et al.  Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord , 1989, Springer US.

[46]  T. Jessell,et al.  Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. , 1989, Journal of neurophysiology.

[47]  D. Bouhassira,et al.  Convergence of heterotopic nociceptive information onto subnucleus reticularis dorsalis neurons in the rat medulla. , 1988, Journal of neurophysiology.

[48]  T. Jessell,et al.  Sensory transmitters regulate intracellular calcium in dorsal horn neurons , 1988, Nature.

[49]  A. Woda,et al.  The rostral part of the trigeminal sensory complex is involved in orofacial nociception , 1988, Brain Research.

[50]  A. Kavookjian,et al.  Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III–V) , 1988, The Journal of comparative neurology.

[51]  Y. Shigenaga,et al.  Ascending and descending internuclear projections within the trigeminal sensory nuclear complex , 1987, Brain Research.

[52]  D. Lodge,et al.  Evidence for involvement ofN-methylaspartate receptors in ‘wind-up’ of class 2 neurones in the dorsal horn of the rat , 1987, Brain Research.

[53]  G. Wilcox,et al.  Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. , 1987, The Journal of pharmacology and experimental therapeutics.

[54]  G. Urca,et al.  IntrathecalN-methyl-d-aspartate (NMDA) activates both nociceptive and antinociceptive systems , 1987, Brain Research.

[55]  J. Greenspan,et al.  Morphological features of lamina V neurons receiving nociceptive input in cat sacrocaudal spinal cord , 1985, The Journal of comparative neurology.

[56]  S. Hunt,et al.  Peptide- and non-peptide-containing unmyelinated primary afferents: the parallel processing of nociceptive information. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  M. Matsushita,et al.  Ascending and descending internuclear connections of the trigeminal sensory nuclei in the cat. A study with the retrograde and anterograde horseradish peroxidase technique , 1984, Neuroscience.

[58]  M. Randić,et al.  Slow excitatory transmission in rat dorsal horn: possible mediation by peptides , 1984, Brain Research.

[59]  M. D. Egger,et al.  Organization of HRP‐labeled trigeminal mandibular, primary afferent neurons in the rat , 1983, The Journal of comparative neurology.

[60]  R. Dubner,et al.  Physilogy and morphology of substantia gelatinosa neurons intracellularly stained with horserdish peroxidase , 1980 .

[61]  J. Besson,et al.  Does systemic morphine increase descending inhibitory controls of dorsal horn neurones involved in nociception? , 1980, Brain Research.

[62]  Anthony H. Dickenson,et al.  Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat , 1979, PAIN.

[63]  M. Kuhar,et al.  Autoradiographic localization of opiate receptors in rat brain. II. The brain stem , 1977, Brain Research.

[64]  M. Sanders Handbook of Sensory Physiology , 1975 .

[65]  M. Magalhães,et al.  The substantia gelatinosa Rolandi of the rat. Fine structure, cytochemistry (acid phosphatase) and changes after dorsal root section , 1974, Journal of neurocytology.

[66]  L M Mendell,et al.  Physiological properties of unmyelinated fiber projection to the spinal cord. , 1966, Experimental neurology.

[67]  P. Wall,et al.  Responses of Single Dorsal Cord Cells to Peripheral Cutaneous Unmyelinated Fibres , 1965, Nature.

[68]  H. S. Gasser,et al.  THE RÔLE PLAYED BY THE SIZES OF THE CONSTITUENT FIBERS OF A NERVE TRUNK IN DETERMINING THE FORM OF ITS ACTION POTENTIAL WAVE , 1927 .

[69]  R. Rhoades,et al.  Organization of primary afferent axons in the trigeminal sensory root and tract of the rat , 1996, The Journal of comparative neurology.

[70]  S. Nishi,et al.  Primary afferent‐evoked glycine‐ and GABA‐mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro. , 1995, The Journal of physiology.

[71]  S. Jeftinija,et al.  Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study. , 1994, Journal of neurophysiology.

[72]  W. Steedman The Influence of Cutaneous Inputs on the Activity of Neurones in the Substantia Gelatinosa , 1989 .

[73]  J. Besson,et al.  Peripheral and spinal mechanisms of nociception. , 1987, Physiological reviews.

[74]  Stephen J. Smith,et al.  NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones , 1986, Nature.

[75]  M. Randić,et al.  Actions of substance P on rat spinal dorsal horn neurones. , 1984, The Journal of physiology.

[76]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[77]  P. R. Burgess,et al.  Cutaneous Mechanoreceptors and Nociceptors , 1973 .