Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI

Inferring brain connectivity and structure \textit{in-vivo} requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high-dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep-learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in-vivo diffusion data, demonstrating the advantages of our method over existing approaches.

[1]  J. E. Iglesias,et al.  NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI , 2023, IEEE Transactions on Medical Imaging.

[2]  Joshua D. Batson,et al.  Denoising of diffusion MRI in the cervical spinal cord – effects of denoising strategy and acquisition on intra-cord contrast, signal modeling, and feature conspicuity , 2022, NeuroImage.

[3]  T. Müller,et al.  Instant neural graphics primitives with a multiresolution hash encoding , 2022, ACM Trans. Graph..

[4]  Lawrence L. Wald,et al.  In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution , 2020, Scientific Data.

[5]  Carl-Fredrik Westin,et al.  SNR‐enhanced diffusion MRI with structure‐preserving low‐rank denoising in reproducing kernel Hilbert spaces , 2020, Magnetic resonance in medicine.

[6]  Daniel E. Worrall,et al.  Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI , 2020, NeuroImage.

[7]  Jonathan T. Barron,et al.  Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains , 2020, NeurIPS.

[8]  Gordon Wetzstein,et al.  Implicit Neural Representations with Periodic Activation Functions , 2020, NeurIPS.

[9]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[10]  Derek K. Jones,et al.  Noninvasive quantification of axon radii using diffusion MRI , 2020, eLife.

[11]  M. Genton,et al.  Recent developments in complex and spatially correlated functional data , 2020, Brazilian Journal of Probability and Statistics.

[12]  Sebastian W. Ober,et al.  Benchmarking the Neural Linear Model for Regression , 2019, ArXiv.

[13]  Raghav Mehta,et al.  Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference , 2019, IEEE Transactions on Medical Imaging.

[14]  Pierre Lafaye de Micheaux,et al.  Depth for Curve Data and Applications , 2019, Journal of the American Statistical Association.

[15]  Joseph V. Hajnal,et al.  Complex diffusion-weighted image estimation via matrix recovery under general noise models , 2018, NeuroImage.

[16]  M. Quellmalz The Funk–Radon transform for hyperplane sections through a common point , 2018, Analysis and Mathematical Physics.

[17]  Pew-Thian Yap,et al.  Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space , 2018, Medical Image Anal..

[18]  Peter I. Frazier,et al.  A Tutorial on Bayesian Optimization , 2018, ArXiv.

[19]  Jelle Veraart,et al.  Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI , 2018, NeuroImage.

[20]  Yoshua Bengio,et al.  On the Spectral Bias of Neural Networks , 2018, ICML.

[21]  David B. Dunson,et al.  Mapping population-based structural connectomes , 2018, NeuroImage.

[22]  Anders M. Dale,et al.  The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites , 2018, Developmental Cognitive Neuroscience.

[23]  Hans Knutsson,et al.  Bayesian uncertainty quantification in linear models for diffusion MRI , 2017, NeuroImage.

[24]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[25]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[26]  Karsten Tabelow,et al.  Low SNR in Diffusion MRI Models , 2016 .

[27]  David H. Laidlaw,et al.  Kernel regression estimation of fiber orientation mixtures in diffusion MRI , 2016, NeuroImage.

[28]  Jerry L. Prince,et al.  Estimation of fiber orientations using neighborhood information , 2016, Medical Image Anal..

[29]  Rachid Deriche,et al.  Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use? , 2015, Medical Image Anal..

[30]  Stamatios N. Sotiropoulos,et al.  Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes , 2015, NeuroImage.

[31]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[32]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[33]  Santiago Aja-Fernández,et al.  Spatially variant noise estimation in MRI: A homomorphic approach , 2015, Medical Image Anal..

[34]  Nikolaus Weiskopf,et al.  Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS , 2014, NeuroImage.

[35]  Dinggang Shen,et al.  Uncertainty Estimation in Diffusion MRI Using the Nonlocal Bootstrap , 2014, IEEE Transactions on Medical Imaging.

[36]  Arno Solin,et al.  Hilbert space methods for reduced-rank Gaussian process regression , 2014, Stat. Comput..

[37]  Rachid Deriche,et al.  A polynomial approach for extracting the extrema of a spherical function and its application in diffusion MRI , 2013, Medical Image Anal..

[38]  Wenxing Ye,et al.  Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields , 2013, IPMI.

[39]  Pengfei Li,et al.  Spatial Shrinkage Estimation of Diffusion Tensors on Diffusion-Weighted Imaging Data , 2013 .

[40]  Rosa E. Lillo,et al.  The Mahalanobis Distance for Functional Data With Applications to Classification , 2013, Technometrics.

[41]  Rachid Deriche,et al.  A robust variational approach for simultaneous smoothing and estimation of DTI , 2013, NeuroImage.

[42]  Alfred Anwander,et al.  Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS) , 2012, Medical Image Anal..

[43]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[44]  Christophe Lenglet,et al.  A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry , 2011, NeuroImage.

[45]  Yogesh Rathi,et al.  Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging , 2011, IEEE Transactions on Medical Imaging.

[46]  Ashish Raj,et al.  Spatial HARDI: Improved visualization of complex white matter architecture with Bayesian spatial regularization , 2011, NeuroImage.

[47]  Daniel C. Alexander,et al.  Using the Model-Based Residual Bootstrap to Quantify Uncertainty in Fiber Orientations From $Q$-Ball Analysis , 2009, IEEE Transactions on Medical Imaging.

[48]  Gerda Claeskens,et al.  Bootstrapping for Penalized Spline Regression , 2009 .

[49]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[50]  Yogesh Rathi,et al.  On Approximation of Orientation Distributions by Means of Spherical Ridgelets , 2008, IEEE Transactions on Image Processing.

[51]  R. Dougherty,et al.  FALSE DISCOVERY RATE ANALYSIS OF BRAIN DIFFUSION DIRECTION MAPS. , 2008, The annals of applied statistics.

[52]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[53]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[54]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[55]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[56]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[57]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[58]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[59]  Anit Kumar Sahu,et al.  Multiplicative Filter Networks , 2021, ICLR.

[60]  H. Knutsson,et al.  Bayesian uncertainty quanti cation in linear models for di usion MRI , 2018 .

[61]  A. G. D. G. Matthews,et al.  Sample-then-optimize posterior sampling for Bayesian linear models , 2017 .

[62]  Montserrat Fuentes,et al.  Isotropic covariance functions on spheres: Some properties and modeling considerations , 2016, J. Multivar. Anal..

[63]  Alessandra Menafoglio,et al.  A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space , 2013 .