Climate Data Records from Meteosat First Generation Part II: Retrieval of the In-Flight Visible Spectral Response

How can the in-flight spectral response functions of a series of decades-old broad band radiometers in Space be retrieved post-flight? This question is the key to developing Climate Data Records from the Meteosat Visible and Infrared Imager on board the Meteosat First Generation (MFG) of geostationary satellites, which acquired Earth radiance images in the Visible (VIS) broad band from 1977 to 2017. This article presents a new metrologically sound method for retrieving the VIS spectral response from matchups of pseudo-invariant calibration site (PICS) pixels with datasets of simulated top-of-atmosphere spectral radiance used as reference. Calibration sites include bright desert, open ocean and deep convective cloud targets. The absolute instrument spectral response function is decomposed into generalised Bernstein basis polynomials and a degradation function that is based on plain physical considerations and able to represent typical chromatic ageing characteristics. Retrieval uncertainties are specified in terms of an error covariance matrix, which is projected from model parameter space into the spectral response function domain and range. The retrieval method considers target type-specific biases due to errors in, e.g., the selection of PICS target pixels and the spectral radiance simulation explicitly. It has been tested with artificial and well-comprehended observational data from the Spinning Enhanced Visible and Infrared Imager on-board Meteosat Second Generation and has retrieved meaningful results for all MFG satellites apart from Meteosat-1, which was not available for analysis.

[1]  Yves M. Govaerts,et al.  Operational vicarious calibration of the MSG/SEVIRI solar channels , 2001 .

[2]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[3]  Carl R. Maag,et al.  An In-Depth Assessment of Internal Contamination in the Wide Field/Planetary Camera: Republished from the Journal of the IES May-June 1990 issue, pages 29-35 , 1990 .

[4]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[5]  Lee D. Feinberg,et al.  Contamination-induced degradation of optics exposed to the Hubble Space Telescope interior , 1996, Optics & Photonics.

[6]  Y. Govaerts Correction of the Meteosat-5 and -6 radiometer solar channel spectral response with the Meteosat-7 sensor spectral characteristics , 1999 .

[7]  C. McClain,et al.  Calibration of SeaWiFS. I. Direct techniques. , 2001, Applied optics.

[8]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[9]  Xiaoxiong Xiong,et al.  Modeling the Detector Radiometric Gains of the Suomi NPP VIIRS Reflective Solar Bands , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Jan Cornelis,et al.  Spectral Aging Model Applied to Meteosat First Generation Visible Band , 2014, Remote. Sens..

[11]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[12]  Zhipeng Wang,et al.  Assessment of MODIS and VIIRS solar diffuser on-orbit degradation , 2015, SPIE Optical Engineering + Applications.

[13]  Ralf Quast,et al.  Climate Data Records from Meteosat First Generation Part I: Simulation of Accurate Top-of-Atmosphere Spectral Radiance over Pseudo-Invariant Calibration Sites for the Retrieval of the In-Flight Visible Spectral Response , 2018, Remote. Sens..

[14]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 2. Applications , 2000 .

[15]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[16]  Thomas Kaminski,et al.  Applying TAF to generate efficient derivative code of Fortran 77‐95 programs , 2003 .

[17]  Yves M. Govaerts,et al.  Towards Multidecadal Consistent Meteosat Surface Albedo Time Series , 2010, Remote. Sens..

[18]  J. Cornelis,et al.  A Spectral Aging Model for the Meteosat-7 Visible Band , 2013 .

[19]  Frederick S. Patt,et al.  Characterization of MODIS and SeaWiFS solar diffuser on-orbit degradation , 2009, Optical Engineering + Applications.

[20]  Grant Matthews,et al.  In-Flight Spectral Characterization and Calibration Stability Estimates for the Clouds and the Earth’s Radiant Energy System (CERES) , 2009 .

[21]  Christopher J. Merchant,et al.  Radiance Uncertainty Characterisation to Facilitate Climate Data Record Creation , 2019, Remote. Sens..

[22]  Ilse Aben,et al.  Mirror contamination in space I: mirror modelling , 2014 .

[23]  Wayne K. Stuckey,et al.  Lessons Learned from the Long Duration Exposure Facility , 1993 .

[24]  A. Ipe,et al.  Evidence of pre-launch characterization problem of Meteosat-7 visible spectral response , 2013 .

[25]  Yves M. Govaerts,et al.  Retrieval error estimation of surface albedo derived from geostationary large band satellite observations: Application to Meteosat‐2 and Meteosat‐7 data , 2007 .

[26]  Xiaoxiong Xiong,et al.  Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[27]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 1. Theory , 2000 .

[28]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[29]  Ralf Quast,et al.  Climate Data Records from Meteosat First Generation Part III: Recalibration and Uncertainty Tracing of the Visible Channel on Meteosat-2-7 Using Reconstructed, Spectrally Changing Response Functions , 2019, Remote. Sens..

[30]  Xi Shao,et al.  Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering , 2016, Remote. Sens..

[31]  Graham S. Arnold,et al.  Photochemical Spacecraft Self-Contamination: Laboratory Results and Systems Impacts , 1989 .

[32]  W. Hunter,et al.  Laboratory experiments to study surface contamination and degradation of optical coatings and materials in simulated space environments. , 1970, Applied optics.

[33]  R. Giering Tangent Linear and Adjoint Biogeochemical Models , 2013 .

[34]  Yves M. Govaerts,et al.  Operational calibration of the Meteosat radiometer VIS band , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[35]  N. Mahowald,et al.  Inverse methods in global biogeochemical cycles , 2000 .