Climate Data Records from Meteosat First Generation Part II: Retrieval of the In-Flight Visible Spectral Response
暂无分享,去创建一个
Ralf Quast | Ralf Giering | Yves M. Govaerts | Frank Rüthrich | Rob Roebeling | R. Giering | R. Roebeling | F. Rüthrich | Y. Govaerts | R. Quast
[1] Yves M. Govaerts,et al. Operational vicarious calibration of the MSG/SEVIRI solar channels , 2001 .
[2] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[3] Carl R. Maag,et al. An In-Depth Assessment of Internal Contamination in the Wide Field/Planetary Camera: Republished from the Journal of the IES May-June 1990 issue, pages 29-35 , 1990 .
[4] Claude Lemaréchal,et al. Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..
[5] Lee D. Feinberg,et al. Contamination-induced degradation of optics exposed to the Hubble Space Telescope interior , 1996, Optics & Photonics.
[6] Y. Govaerts. Correction of the Meteosat-5 and -6 radiometer solar channel spectral response with the Meteosat-7 sensor spectral characteristics , 1999 .
[7] C. McClain,et al. Calibration of SeaWiFS. I. Direct techniques. , 2001, Applied optics.
[8] Rida T. Farouki,et al. The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..
[9] Xiaoxiong Xiong,et al. Modeling the Detector Radiometric Gains of the Suomi NPP VIIRS Reflective Solar Bands , 2015, IEEE Transactions on Geoscience and Remote Sensing.
[10] Jan Cornelis,et al. Spectral Aging Model Applied to Meteosat First Generation Visible Band , 2014, Remote. Sens..
[11] J. Hansen,et al. Stratospheric aerosol optical depths, 1850–1990 , 1993 .
[12] Zhipeng Wang,et al. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation , 2015, SPIE Optical Engineering + Applications.
[13] Ralf Quast,et al. Climate Data Records from Meteosat First Generation Part I: Simulation of Accurate Top-of-Atmosphere Spectral Radiance over Pseudo-Invariant Calibration Sites for the Retrieval of the In-Flight Visible Spectral Response , 2018, Remote. Sens..
[14] D. Diner,et al. Surface albedo retrieval from Meteosat: 2. Applications , 2000 .
[15] Thomas Kaminski,et al. Recipes for adjoint code construction , 1998, TOMS.
[16] Thomas Kaminski,et al. Applying TAF to generate efficient derivative code of Fortran 77‐95 programs , 2003 .
[17] Yves M. Govaerts,et al. Towards Multidecadal Consistent Meteosat Surface Albedo Time Series , 2010, Remote. Sens..
[18] J. Cornelis,et al. A Spectral Aging Model for the Meteosat-7 Visible Band , 2013 .
[19] Frederick S. Patt,et al. Characterization of MODIS and SeaWiFS solar diffuser on-orbit degradation , 2009, Optical Engineering + Applications.
[20] Grant Matthews,et al. In-Flight Spectral Characterization and Calibration Stability Estimates for the Clouds and the Earth’s Radiant Energy System (CERES) , 2009 .
[21] Christopher J. Merchant,et al. Radiance Uncertainty Characterisation to Facilitate Climate Data Record Creation , 2019, Remote. Sens..
[22] Ilse Aben,et al. Mirror contamination in space I: mirror modelling , 2014 .
[23] Wayne K. Stuckey,et al. Lessons Learned from the Long Duration Exposure Facility , 1993 .
[24] A. Ipe,et al. Evidence of pre-launch characterization problem of Meteosat-7 visible spectral response , 2013 .
[25] Yves M. Govaerts,et al. Retrieval error estimation of surface albedo derived from geostationary large band satellite observations: Application to Meteosat‐2 and Meteosat‐7 data , 2007 .
[26] Xiaoxiong Xiong,et al. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite , 2014, IEEE Transactions on Geoscience and Remote Sensing.
[27] D. Diner,et al. Surface albedo retrieval from Meteosat: 1. Theory , 2000 .
[28] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[29] Ralf Quast,et al. Climate Data Records from Meteosat First Generation Part III: Recalibration and Uncertainty Tracing of the Visible Channel on Meteosat-2-7 Using Reconstructed, Spectrally Changing Response Functions , 2019, Remote. Sens..
[30] Xi Shao,et al. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering , 2016, Remote. Sens..
[31] Graham S. Arnold,et al. Photochemical Spacecraft Self-Contamination: Laboratory Results and Systems Impacts , 1989 .
[32] W. Hunter,et al. Laboratory experiments to study surface contamination and degradation of optical coatings and materials in simulated space environments. , 1970, Applied optics.
[33] R. Giering. Tangent Linear and Adjoint Biogeochemical Models , 2013 .
[34] Yves M. Govaerts,et al. Operational calibration of the Meteosat radiometer VIS band , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[35] N. Mahowald,et al. Inverse methods in global biogeochemical cycles , 2000 .