Estimation of optimum density and temperature for maximum efficiency of tin ions in Z discharge extreme ultraviolet sources

Extreme ultraviolet (EUV) discharge-based lamps for EUV lithography need to generate extremely high power in the narrow spectrum band of 13.5±0.135 nm. A simplified collisional-radiative model and radiative transfer solution for an isotropic medium were utilized to investigate the wavelength-integrated light outputs in tin (Sn) plasma. Detailed calculations using the Hebrew University-Lawrence Livermore atomic code were employed for determination of necessary atomic data of the Sn4+ to Sn13+ charge states. The result of model is compared with experimental spectra from a Sn-based discharge-produced plasma. The analysis reveals that considerably larger efficiency compared to the so-called efficiency of a black-body radiator is formed for the electron density ≃1018 cm−3. For higher electron density, the spectral efficiency of Sn plasma reduces due to the saturation of resonance transitions.

[1]  H. Furth,et al.  Plasma diagnostic techniques , 1965 .

[2]  F. Najmabadi,et al.  Effect of focal spot size on in-band 13.5 nm extreme ultraviolet emission from laser-produced Sn plasma. , 2006, Optics letters.

[3]  Liberman Michael,et al.  Physics of High-Density Z-Pinch Plasmas , 1999 .

[4]  L. P. Mix,et al.  Charge-state distribution and Doppler effect in an expanding photoionized plasma. , 2004, Physical review letters.

[5]  David Attwood,et al.  Soft X-rays and Extreme Ultraviolet Radiation: INTRODUCTION , 1999 .

[6]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[7]  M. Nakajima,et al.  Characteristics of Extreme Ultraviolet Radiation Conversion Efficiency of Xenon Plasma , 2004 .

[8]  M. Nakajima,et al.  Approach to optimize conversion efficiency of discharge-pumped plasma extreme ultraviolet sources , 2005 .

[9]  A. Anders Atomic scale heating in cathodic arc plasma deposition , 2002 .

[10]  M. Nakajima,et al.  Potential of discharge-based lithium plasma as an extreme ultraviolet source , 2006 .

[11]  Franck Gilleron,et al.  Modeling of EUV emission from xenon and tin plasma sources for nanolithography , 2006 .

[12]  Lee,et al.  Reversed current structure in a Z-pinch plasma , 2000, Physical review letters.

[13]  S. O. Kastner The photon single-flight escape probability for Voigt profiles: expressions, values and diagrams. , 1995 .

[14]  A. Cummings,et al.  Simplified modeling of 13.5 nm unresolved transition array emission of a Sn plasma and comparison with experiment , 2005 .

[15]  M. H. Elghazaly The mean probability of photon capture of resonance radiation in atomic absorption spectroscopy , 2004 .

[16]  Raymond C. Elton,et al.  X-ray lasers , 1990 .

[17]  S. O. Kastner,et al.  Doppler-profile escape factors and escape probabilities for the cylinder and hemisphere , 1997 .

[18]  Kunioki Mima,et al.  Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas. , 2005, Physical review letters.

[19]  Irvin R. Lindemuth,et al.  Investigation of a novel discharge EUV source for microlithography , 2006, SPIE Advanced Lithography.

[20]  Larissa Juschkin,et al.  Fundamentals and limits for the EUV emission of pinch plasma sources for EUV lithography , 2004 .

[21]  M. Nakajima,et al.  Influence of opacity on gain coefficients in static, and fast moving neon-like krypton plasmas , 2002 .

[22]  W. Hartmann,et al.  Pseudospark electron beam as an excitation source for extreme ultraviolet generation , 2005 .

[23]  N. Qi,et al.  A two-level model for K-shell radiation scaling of the imploding Z-pinch plasma radiation source , 1998 .

[24]  S S Churilov,et al.  Analyses of the Sn IX–Sn XII spectra in the EUV region , 2006 .

[25]  Tatsuya Aota,et al.  Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma. , 2005, Physical review letters.

[26]  Bryan J. Rice,et al.  Simulation and optimization of DPP hydrodynamics and radiation transport for EUV lithography devices , 2004, SPIE Advanced Lithography.

[27]  K. Bergmann,et al.  Scaling of the K-shell line emission in transient pinch plasmas , 1997 .

[28]  S. O. Kastner,et al.  HALF-WIDTHS, ESCAPE PROBABILITIES AND INTENSITY FACTORS OF OPACITY-BROADENED DOPPLER- AND VOIGT-PROFILE LINES , 1997 .

[29]  Rainer Lebert,et al.  Narrowband laser produced extreme ultraviolet sources adapted to silicon/molybdenum multilayer optics , 1998 .

[30]  J. Katzenstein Optimum coupling of imploding loads to pulse generators , 1981 .

[31]  H. Griem SEMIEMPIRICAL FORMULAS FOR THE ELECTRON-IMPACT WIDTHS AND SHIFTS OF ISOLATED ION LINES IN PLASMAS. , 1968 .

[32]  T. Kawamura,et al.  Simulation of the EUV spectrum of Xe and Sn plasmas , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  A. Wendt,et al.  Absolute densities of long lived species in an ionized physical vapor deposition copper–argon plasma , 2000 .

[34]  Roel Moors,et al.  Plasma sources for EUV lithography exposure tools , 2004 .

[35]  Sing Lee An energy-consistent snow-plough model for pinch design , 1983 .

[36]  X-ray Spectroscopy of Cooling Clusters , 2005, astro-ph/0512549.

[37]  G. Tonon,et al.  X‐ray emission in laser‐produced plasmas , 1973 .

[38]  C. Ober,et al.  Recent progress in high resolution lithography , 2006 .

[39]  I. Fomenkov,et al.  Extreme ultraviolet emission spectra of highly ionized xenon and their comparison with model calculations , 2004 .

[40]  I. Vardavas Fast and accurate generation of the curve of growth for the voigt lineshape , 1993 .

[41]  Katsunobu Nishihara,et al.  Analysis of the emission spectrum of Xe and Sn , 2006, SPIE Advanced Lithography.

[42]  W. T. Silfvast,et al.  Intense EUV incoherent plasma sources for EUV lithography and other applications , 1999 .

[43]  M. Klapisch,et al.  HULLAC, an integrated computer package for atomic processes in plasmas , 2001 .

[44]  M A Klosner,et al.  Intense plasma discharge source at 13.5 nm for extreme-ultraviolet lithography. , 1997, Optics letters.

[45]  Hiroto Sato,et al.  Development of Xe- and Sn-fueled high-power Z-pinch EUV source aiming at HVM , 2006, SPIE Advanced Lithography.

[46]  Jeroen Jonkers,et al.  High power extreme ultra-violet (EUV) light sources for future lithography , 2005 .