Mobile NMDA Receptors at Hippocampal Synapses

[1]  Stephen J. Smith,et al.  Stability and Plasticity of Developing Synapses in Hippocampal Neuronal Cultures , 2002, The Journal of Neuroscience.

[2]  John L. Thomas The Major , 2001 .

[3]  K. Roche,et al.  Molecular determinants of NMDA receptor internalization , 2001, Nature Neuroscience.

[4]  G. Westbrook,et al.  A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux , 2001, Nature Neuroscience.

[5]  A. Triller,et al.  Fast and reversible trapping of surface glycine receptors by gephyrin , 2001, Nature Neuroscience.

[6]  Mark von Zastrow,et al.  Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD , 2000, Nature Neuroscience.

[7]  M. Bear,et al.  Bidirectional, Activity-Dependent Regulation of Glutamate Receptors in the Adult Hippocampus In Vivo , 2000, Neuron.

[8]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[9]  M. Kneussel,et al.  Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model , 2000, Trends in Neurosciences.

[10]  Noam E Ziv,et al.  Assembly of New Individual Excitatory Synapses Time Course and Temporal Order of Synaptic Molecule Recruitment , 2000, Neuron.

[11]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[12]  Susanne E. Ahmari,et al.  Assembly of presynaptic active zones from cytoplasmic transport packets , 2000, Nature Neuroscience.

[13]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[14]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[15]  J. Lichtman,et al.  Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. , 1999, Science.

[16]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[17]  G. Westbrook,et al.  The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro , 1999, The Journal of Neuroscience.

[18]  R. Wenthold,et al.  Turnover Analysis of Glutamate Receptors Identifies a Rapidly Degraded Pool of the N-Methyl-d-aspartate Receptor Subunit, NR1, in Cultured Cerebellar Granule Cells* , 1999, The Journal of Biological Chemistry.

[19]  T. Schikorski,et al.  Comparison of Hippocampal Dendritic Spines in Culture and in Brain , 1998, The Journal of Neuroscience.

[20]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[21]  M. Sheng,et al.  Heterogeneity in the Molecular Composition of Excitatory Postsynaptic Sites during Development of Hippocampal Neurons in Culture , 1998, The Journal of Neuroscience.

[22]  S. Vicini,et al.  Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. , 1998, Journal of neurophysiology.

[23]  Mary B. Kennedy,et al.  The postsynaptic density at glutamatergic synapses , 1997, Trends in Neurosciences.

[24]  Peter S. Pennefather,et al.  Multiple Mechanisms of Ketamine Blockade of N‐methyl‐D‐aspartate Receptors , 1997, Anesthesiology.

[25]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[26]  C. Jahr,et al.  Kinetics of NMDA Channel Opening , 1996, The Journal of Neuroscience.

[27]  Stephen J. Smith,et al.  The Dynamics of Dendritic Structure in Developing Hippocampal Slices , 1996, The Journal of Neuroscience.

[28]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[29]  M. Kennedy,et al.  The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[31]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[32]  K Williams,et al.  Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. , 1993, Molecular pharmacology.

[33]  G. Westbrook,et al.  The time course of glutamate in the synaptic cleft. , 1992, Science.

[34]  K. A. Jones,et al.  Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neurons in culture , 1991, Neuron.

[35]  C. Stevens,et al.  Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Mayer,et al.  Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[38]  M. Mayer,et al.  Sites of antagonist action on N-methyl-D-aspartic acid receptors studied using fluctuation analysis and a rapid perfusion technique. , 1988, Journal of neurophysiology.

[39]  B. Bean,et al.  Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C F Stevens,et al.  Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  W. Almers,et al.  Mobility of voltage-dependent ion channels and lectin receptors in the sarcolemma of frog skeletal muscle , 1986, The Journal of general physiology.

[42]  M. Poo,et al.  Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  M. Edidin,et al.  The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. , 1970, Journal of cell science.

[44]  C. Stevens,et al.  Response of Hippocampal Synapses to Natural Stimulation Patterns , 1999, Neuron.

[45]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[46]  I. Módy,et al.  Actions of ketamine, phencyclidine and MK‐801 on NMDA receptor currents in cultured mouse hippocampal neurones. , 1991, The Journal of physiology.

[47]  D. Landis,et al.  Changes in the structure of synaptic junctions during climbing fiber synaptogenesis , 1989, Synapse.

[48]  Kevin J. Tracey,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2022 .