Canopy Density Model: A New ALS-Derived Product to Generate Multilayer Crown Cover Maps

The canopy density model (CDM), a new product interpolated from airborne laser scanner (ALS) data and dedicated to forest structure characterization is presented. It exploits both the multiecho capability of the ALS and a nonparametric density estimation technique called kernel density estimators (KDEs). The CDM is used to delineate the outmost perimeter of vegetation features and to compute forest crown cover (CrCO). Contrary to other works that focus on single-layer forest canopies, CrCo is derived here for each layer, namely, the overstory, the understory, and ground vegetation. The root-mean-square error of prediction determined by using field data acquired over 44 forest stands in a forest in Portugal allows the testing of the reliability of the method: It ranges from 6.21% (overstory) to 13.76% (ground vegetation). In addition, we investigate the ability of the CDM to map the CrCo for individual trees. Finally, two existing methods have been applied to our study site in order to assess improvements, advantages, and drawbacks of our approach.

[1]  M. Grilli,et al.  Carbon storage, community structure and canopy cover: A comparison along a precipitation gradient , 2012 .

[2]  M. North,et al.  Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest , 2009 .

[3]  Nikos Koutsias,et al.  FIRE OCCURRENCE PATTERNS AT LANDSCAPE LEVEL: BEYOND POSITIONAL ACCURACY OF IGNITION POINTS WITH KERNEL DENSITY ESTIMATION METHODS , 2008 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  Svein Solberg,et al.  Mapping gap fraction, LAI and defoliation using various ALS penetration variables , 2010 .

[6]  Gil Rito Gonçalves,et al.  A Thorough Accuracy Estimation of DTM Produced From Airborne Full-Waveform Laser Scanning Data of Unmanaged Eucalypt Plantations , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[7]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[8]  Matti Maltamo,et al.  Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index , 2011 .

[9]  R. Houghton,et al.  Characterizing 3D vegetation structure from space: Mission requirements , 2011 .

[10]  Hiroshi Hashimoto,et al.  Spectral Correction for the Effect of Crown Shape at the Single-Tree Level: An Approach Using a Lidar-Derived Digital Surface Model for Broad-Leaved Canopy , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[11]  A. Hudak,et al.  Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .

[12]  Gil Gonçalves,et al.  Accuracy of a DTM derived from full-waveform laser scanning data under unstructured eucalypt forest: a case study , 2010 .

[13]  Juha Hyyppä,et al.  TerraSAR-X Stereo Radargrammetry and Airborne Scanning LiDAR Height Metrics in Imputation of Forest Aboveground Biomass and Stem Volume , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Michael J. Olsen,et al.  Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest , 2012 .

[15]  B. Koch,et al.  A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest , 2008, Sensors.

[16]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[17]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[18]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[19]  Nils-Bastian Heidenreich,et al.  Bandwidth selection for kernel density estimation: a review of fully automatic selectors , 2013, AStA Advances in Statistical Analysis.

[20]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[21]  Beniamino Murgante,et al.  Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy) , 2008, ICCSA.

[22]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[23]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[24]  Chien-Shun Lo,et al.  Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[25]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[26]  Roger D. Ottmar,et al.  Characterizing fuels in the 21st Century , 2001 .

[27]  Jennie L. Pearce,et al.  Boreal forest landbirds in relation to forest composition, structure, and landscape: implications for forest management , 2007 .

[28]  Tessa K Anderson,et al.  Kernel density estimation and K-means clustering to profile road accident hotspots. , 2009, Accident; analysis and prevention.

[29]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[30]  Wenge Ni-Meister,et al.  Modeling lidar waveforms in heterogeneous and discrete canopies , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  B. Koetz,et al.  Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning , 2010 .

[32]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[33]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[34]  Stefan Steiniger,et al.  A scaled line-based kernel density estimator for the retrieval of utilization distributions and home ranges from GPS movement tracks , 2013, Ecol. Informatics.

[35]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[36]  D. Sheil,et al.  Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures , 1999 .

[37]  Narendra Ahuja,et al.  Regression based bandwidth selection for segmentation using Parzen windows , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[38]  Bryce J. Stokes,et al.  Glossary of Terms Used in Timber Harvesting and Forest Engineering , 1989 .

[39]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[40]  A. Gonsamo,et al.  Measuring fractional forest canopy element cover and openness - definitions and methodologies revisited , 2013 .

[41]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[42]  Felix Morsdorf,et al.  Understory trees in airborne LiDAR data — Selective mapping due to transmission losses and echo-triggering mechanisms , 2012 .

[43]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[44]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[45]  Wayne M. Getz,et al.  A framework for generating and analyzing movement paths on ecological landscapes , 2008, Proceedings of the National Academy of Sciences.

[46]  T. Dawson,et al.  Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol , 2005 .

[47]  Frédéric Bretar,et al.  Comparing small-footprint lidar and forest inventory data for single strata biomass estimation - A case study over a multi-layered mediterranean forest , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[48]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[49]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Mikko Kolehmainen,et al.  Neural Networks for the Prediction of Species-Specific Plot Volumes Using Airborne Laser Scanning and Aerial Photographs , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[51]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[52]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[53]  S. Garman,et al.  Comparison of five canopy cover estimation techniques in the western Oregon Cascades , 2006 .

[54]  Alex C. Lee,et al.  A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests , 2007 .

[55]  Frédéric Bretar,et al.  3-D mapping of a multi-layered Mediterranean forest using ALS data , 2012 .