General Method of Construction of Implicit Discrete Maps Generating Chaos in 3D Quadratic Systems of Differential Equations

A method allowing to study the dynamics of 3D systems of quadratic differential equations by the reduction of these systems to the special 2D systems is presented. The mentioned 2D systems are used for the construction of new types of discrete maps generating the chaotic dynamics in some 3D autonomous systems of quadratic differential equations. Strong simplification of all results gives an introduction of the Lambert function. Due to this function some implicit discrete maps become explicit. Examples are given.

[1]  Maoan Han,et al.  The existence of homoclinic orbits to saddle-focus , 2005, Appl. Math. Comput..

[2]  Xia Wang,et al.  Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system , 2009 .

[3]  Qigui Yang,et al.  A new method to find homoclinic and heteroclinic orbits , 2011, Appl. Math. Comput..

[4]  Guanrong Chen,et al.  An Extended sIL'nikov homoclinic Theorem and its Applications , 2009, Int. J. Bifurc. Chaos.

[5]  Zhen Jia,et al.  On the Existence Structure of One-dimensional Discrete Chaotic Systems , 2011 .

[6]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[7]  Gennady A. Leonov,et al.  General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems , 2012 .

[8]  Recai Kiliç,et al.  A New Way of Generating n-scroll attractors via Trigonometric Function , 2011, Int. J. Bifurc. Chaos.

[9]  Gennady A. Leonov,et al.  Shilnikov Chaos in Lorenz-like Systems , 2013, Int. J. Bifurc. Chaos.

[10]  Vasiliy Ye. Belozyorov,et al.  On existence of homoclinic orbits for some types of autonomous quadratic systems of differential equations , 2011, Appl. Math. Comput..

[11]  Ayub Khan,et al.  Chaotic Properties on Time Varying Map and Its Set Valued Extension , 2013 .

[12]  Guanrong Chen,et al.  Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system , 2006 .

[13]  Vasiliy Ye. Belozyorov New types of 3-D systems of quadratic differential equations with chaotic dynamics based on Ricker discrete population model , 2011, Appl. Math. Comput..

[14]  Jianhua Sun,et al.  Si’lnikov homoclinic orbits in a new chaotic system , 2007 .

[15]  Chen-Chang Peng,et al.  Rigorous Verification of the Existence of Transversal homoclinic orbits , 2008, Int. J. Bifurc. Chaos.

[16]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[17]  M. Schanz,et al.  Author ' s personal copy Critical homoclinic orbits lead to snapback repellers , 2011 .

[18]  R. Robinson,et al.  An Introduction to Dynamical Systems: Continuous and Discrete , 2004 .

[19]  Zdenek Kocan Chaos on One-Dimensional Compact Metric Spaces , 2012, Int. J. Bifurc. Chaos.

[20]  L. Perko,et al.  Bounded quadratic systems in the plane , 1970 .

[21]  M. T. Yassen,et al.  Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems , 2012, Appl. Math. Comput..

[22]  Chi K. Tse,et al.  Reconstruction of Chaotic Signals with Applications to Chaos-Based Communications , 2008 .

[23]  Vasiliy Ye. Belozyorov Implicit one-dimensional discrete maps and their connection with existence problem of chaotic dynamics in 3-D systems of differential equations , 2012, Appl. Math. Comput..

[24]  W. Tucker The Lorenz attractor exists , 1999 .

[25]  Xu Zhang,et al.  Constructing Chaotic Polynomial Maps , 2009, Int. J. Bifurc. Chaos.

[26]  Vasiliy Ye. Belozyorov,et al.  Generating Chaos in 3D Systems of quadratic differential equations with 1D exponential Maps , 2013, Int. J. Bifurc. Chaos.