Wireless physical-layer security: The case of colluding eavesdroppers

We consider the fundamental security limits of stochastic wireless networks in the presence of colluding eavesdroppers. By establishing a direct connection with the single-input multiple-output (SIMO) Gaussian wiretap channel, we are able to provide a complete characterization of the secrecy capacity for the case in which the eavesdroppers are scattered according to a spatial Poisson process. Our analysis, which includes the probabilities of existence and outage of secrecy capacity, helps clarify how the spatial density of eavesdroppers can jeopardize the success of wireless physical-layer security based on information-theoretic principles.

[1]  Alfred O. Hero,et al.  Secure space-time communication , 2003, IEEE Trans. Inf. Theory.

[2]  Hesham El Gamal,et al.  On the Secrecy Capacity of Fading Channels , 2006, 2007 IEEE International Symposium on Information Theory.

[3]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[4]  Christian Bettstetter,et al.  Connectivity of Wireless Multihop Networks in a Shadow Fading Environment , 2003, MSWIM '03.

[5]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[6]  Roy D. Yates,et al.  Secrecy capacity of independent parallel channels , 2009 .

[7]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[8]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[9]  Martin Haenggi The secrecy graph and some of its properties , 2008, 2008 IEEE International Symposium on Information Theory.

[10]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[11]  John A. Silvester,et al.  On the Capacity of Multihop Slotted ALOHA Networks with Regular Structure , 1983, IEEE Trans. Commun..

[12]  Moe Z. Win,et al.  Energy Efficiency of Dense Wireless Sensor Networks: To Cooperate or Not to Cooperate , 2006, 2006 IEEE International Conference on Communications.

[13]  Eitan Altman,et al.  Coverage and connectivity of ad hoc networks presence of channel randomness , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[14]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[15]  Rudolf Mathar,et al.  On the distribution of cumulated interference power in Rayleigh fading channels , 1995, Wirel. Networks.

[16]  Moe Z. Win,et al.  Communication in a Poisson Field of Interferers-Part II: Channel Capacity and Interference Spectrum , 2010, IEEE Transactions on Wireless Communications.

[17]  R. Negi,et al.  Secret communication in presence of colluding eavesdroppers , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[18]  Moe Z. Win,et al.  Communication in a Poisson Field of Interferers--Part I: Interference Distribution and Error Probability , 2010, IEEE Transactions on Wireless Communications.

[19]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[20]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[21]  Hesham El Gamal,et al.  ARQ Diversity in Fading Random Access Channels , 2006, ArXiv.

[22]  M.Z. Win,et al.  Physical-layer security in stochastic wireless networks , 2008, 2008 11th IEEE Singapore International Conference on Communication Systems.

[23]  Richard E. Blahut,et al.  Secrecy capacity of SIMO and slow fading channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[24]  Daniele Puccinelli,et al.  Routing in ad hoc networks: a case for long hops , 2005, IEEE Communications Magazine.