The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo.

[1]  B. Stockman,et al.  1H Nuclear Magnetic Resonance Study of Oxazolidinone Binding to Bacterial Ribosomes , 2002, Antimicrobial Agents and Chemotherapy.

[2]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[3]  H. Noller,et al.  Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Peterson,et al.  Resistance to Linezolid: Characterization of Mutations in rRNA and Comparison of Their Occurrences in Vancomycin-Resistant Enterococci , 2001, Antimicrobial Agents and Chemotherapy.

[5]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[6]  C. Squires,et al.  Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable. , 2001, Nucleic acids research.

[7]  S. Douthwaite,et al.  Oxazolidinone Resistance Mutations in 23S rRNA ofEscherichia coli Reveal the Central Region of Domain V as the Primary Site of Drug Action , 2000, Journal of bacteriology.

[8]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[9]  A. Mankin,et al.  Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. , 1999, Journal of molecular biology.

[10]  M. Rodnina,et al.  Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. , 1999, RNA.

[11]  C. Squires,et al.  An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Aoki,et al.  The Oxazolidinone Linezolid Inhibits Initiation of Protein Synthesis in Bacteria , 1998, Antimicrobial Agents and Chemotherapy.

[13]  M. Ruiz-Echevarría,et al.  Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents , 1998, Trends in Biotechnology.

[14]  K. Schimz,et al.  On the target of a novel class of antibiotics, oxazolidinones, active against multidrug‐resistant Gram‐positive bacteria , 1998, FEBS letters.

[15]  K. Marotti,et al.  Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions , 1997, Antimicrobial agents and chemotherapy.

[16]  K. Marotti,et al.  The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin , 1997, Antimicrobial agents and chemotherapy.

[17]  K. Lieberman,et al.  Genetic probes of ribosomal RNA function. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[18]  J. F. Atkins,et al.  rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift , 1994, Journal of bacteriology.

[19]  J. F. Atkins,et al.  Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. , 1993, Journal of molecular biology.

[20]  M. O'Connor,et al.  A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. , 1992, Nucleic acids research.

[21]  S. Douthwaite Functional interactions within 23S rRNA involving the peptidyltransferase center , 1992, Journal of bacteriology.

[22]  W. Craigen,et al.  Recent advances in peptide chain termination , 1990, Molecular microbiology.

[23]  P. Feldman,et al.  Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis , 1988, Antimicrobial Agents and Chemotherapy.

[24]  M. A. Wuonola,et al.  Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721 , 1987, Antimicrobial Agents and Chemotherapy.

[25]  H. Noller,et al.  Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. , 1981, Journal of molecular biology.

[26]  E. Bruck,et al.  National Committee for Clinical Laboratory Standards. , 1980, Pediatrics.

[27]  B. D. Davis,et al.  Phenotypic Suppression in Escherichia coli by Chloramphenicol and Other Reversible Inhibitors of the Ribosome , 1969, Journal of bacteriology.

[28]  C. Sigmund,et al.  Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. , 1988, Methods in enzymology.

[29]  R. Weiss,et al.  Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. , 1987, Cold Spring Harbor symposia on quantitative biology.

[30]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[31]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .