Density of irregular wavelet frames

We show that if an irregular multi-generated wavelet system forms a frame, then both the time parameters and the logarithms of scale parameters have finite upper Beurling densities, or equivalently, both are relatively uniformly discrete. Moreover, if generating functions are admissible, then the logarithms of scale parameters possess a positive lower Beurling density. However, the lower Beurling density of the time parameters may be zero. Additionally, we prove that there are no frames generated by dilations of a finite number of admissible functions.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  J. Benedetto Irregular sampling and frames , 1993 .

[3]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[4]  C. Chui,et al.  Orthonormal wavelets and tight frames with arbitrary real dilations , 2000 .

[5]  Xingwei Zhou,et al.  A class of irregular wavelet frames , 1997 .

[6]  G. Kutyniok,et al.  Density of weighted wavelet frames , 2003 .

[7]  Wenchang Sun,et al.  Irregular wavelet frames , 2000 .

[8]  G. Alexits Approximation theory , 1983 .

[9]  O. Christensen,et al.  Density of Gabor Frames , 1999 .

[10]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[11]  O. Christensen Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .

[12]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[13]  K. Gröchenig Irregular sampling of wavelet and short-time Fourier transforms , 1993 .

[14]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[15]  Stéphane Jaffard,et al.  A density criterion for frames of complex exponentials. , 1991 .

[16]  Wenchang Sun,et al.  Irregular wavelet/Gabor frames , 2002 .

[17]  Peder A. Olsen,et al.  A note on irregular discrete wavelet transforms , 1992, IEEE Trans. Inf. Theory.

[18]  Wenchang Sun,et al.  Density and stability of wavelet frames , 2003 .

[19]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .