New Escherichia coli outer membrane proteins identified through prediction and experimental verification

Many new Escherichia coli outer membrane proteins have recently been identified by proteomics techniques. However, poorly expressed proteins and proteins expressed only under certain conditions may escape detection when wild‐type cells are grown under standard conditions. Here, we have taken a complementary approach where candidate outer membrane proteins have been identified by bioinformatics prediction, cloned and overexpressed, and finally localized by cell fractionation experiments. Out of eight predicted outer membrane proteins, we have confirmed the outer membrane localization for five—YftM, YaiO, YfaZ, CsgF, and YliI—and also provide preliminary data indicating that a sixth—YfaL—may be an outer membrane autotransporter.

[1]  C. Dekker,et al.  Crystal structure of SecB from Escherichia coli. , 2003, Journal of structural biology.

[2]  S. Kedzierska,et al.  Aggregation of heat-shock-denatured, endogenous proteins and distribution of the IbpA/B and Fda marker-proteins in Escherichia coli WT and grpE280 cells. , 2004, Microbiology.

[3]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[4]  I. Henderson,et al.  The great escape: structure and function of the autotransporter proteins. , 1998, Trends in microbiology.

[5]  K. M. Dolan,et al.  Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Lee,et al.  High-level expression of M13 gene II protein from an inducible polycistronic messenger RNA. , 1985, Gene.

[7]  G. von Heijne Recent advances in the understanding of membrane protein assembly and structure. , 1999, Quarterly reviews of biophysics.

[8]  A. Kernytsky,et al.  Transmembrane helix predictions revisited , 2002, Protein science : a publication of the Protein Society.

[9]  G. Heijne,et al.  De novo design of integral membrane proteins , 1994, Nature Structural Biology.

[10]  L. Randall,et al.  Export of periplasmic galactose-binding protein in Escherichia coli depends on the chaperone SecB , 1995, Journal of bacteriology.

[11]  Ingvar Eidhammer,et al.  BOMP: a program to predict integral ?barrel outer membrane proteins encoded within genomes of Gram-negative bacteria , 2004, Nucleic Acids Res..

[12]  A. Gooley,et al.  Proteomic analysis of the Escherichia coli outer membrane. , 2000, European journal of biochemistry.

[13]  A. Krogh,et al.  Reliability measures for membrane protein topology prediction algorithms. , 2003, Journal of molecular biology.

[14]  Da-Neng Wang,et al.  DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. , 2003, Protein expression and purification.

[15]  M. Pool,et al.  Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. , 2004, Biochemistry.

[16]  Yufeng Zhai,et al.  Protein-translocating outer membrane porins of Gram-negative bacteria. , 2002, Biochimica et biophysica acta.

[17]  Samuel Wagner,et al.  Defining the Role of the Escherichia coli Chaperone SecB Using Comparative Proteomics* , 2005, Journal of Biological Chemistry.

[18]  J. Schneider-Mergener,et al.  Substrate Specificity of the SecB Chaperone* , 1999, The Journal of Biological Chemistry.

[19]  Stavros J. Hamodrakas,et al.  PRED-TMBB: a web server for predicting the topology of ?barrel outer membrane proteins , 2004, Nucleic Acids Res..

[20]  J. Tommassen,et al.  Biogenesis of outer membrane protein PhoE of Escherichia coli. Evidence for multiple SecB-binding sites in the mature portion of the PhoE protein. , 1992, Journal of molecular biology.

[21]  Henry R. Bigelow,et al.  Predicting transmembrane beta-barrels in proteomes. , 2004, Nucleic acids research.

[22]  J. de Gier,et al.  Targeting and Translocation of Two Lipoproteins in Escherichia coli via the SRP/Sec/YidC Pathway* , 2004, Journal of Biological Chemistry.

[23]  L. Randall,et al.  SecB, one small chaperone in the complex milieu of the cell , 2002, Cellular and Molecular Life Sciences CMLS.

[24]  M. Schmidt,et al.  The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. , 2003, Microbiology.

[25]  A. Siitonen,et al.  matB, a Common Fimbrillin Gene ofEscherichia coli, Expressed in a Genetically Conserved, Virulent Clonal Group , 2001, Journal of bacteriology.

[26]  W. Wickner,et al.  The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. , 1986, The Journal of biological chemistry.

[27]  Zhaohui Xu,et al.  Crystal structure of the bacterial protein export chaperone SecB , 2000, Nature Structural Biology.

[28]  S. Cohen,et al.  Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Casadio,et al.  Fishing new proteins in the twilight zone of genomes: The test case of outer membrane proteins in Escherichia coli K12, Escherichia coli O157:H7, and other Gram‐negative bacteria , 2003, Protein science : a publication of the Protein Society.

[30]  J. Beckwith,et al.  Evidence for specificity at an early step in protein export in Escherichia coli , 1985, Journal of bacteriology.