Developmental Dynamics of RNA Translation in the Human Brain

[1]  Sarah E. Williams,et al.  Mapping cis-regulatory elements in human neurons links psychiatric disease heritability and activity-regulated transcriptional programs , 2022, Cell reports.

[2]  Christopher D. Brown,et al.  Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease , 2021, Cell.

[3]  F. V. van Werven,et al.  Integrated genomic analysis reveals key features of long undecoded transcript isoform-based gene repression , 2021, Molecular cell.

[4]  Joshua M. Dempster,et al.  Noncanonical open reading frames encode functional proteins essential for cancer cell survival , 2021, Nature Biotechnology.

[5]  Eric C. Griffith,et al.  Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability , 2021, Nature Neuroscience.

[6]  X. Qi,et al.  Implications of mRNA translation dysregulation for neurological disorders. , 2020, Seminars in cell & developmental biology.

[7]  T. Preuss,et al.  Cell-type and cytosine context-specific evolution of DNA methylation in the human brain , 2020, bioRxiv.

[8]  D. Trono,et al.  Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain , 2020, bioRxiv.

[9]  Eric C. Griffith,et al.  Maternal Immune Activation in Mice Disrupts Proteostasis in the Fetal Brain , 2020, Nature Neuroscience.

[10]  H. Kaessmann,et al.  Transcriptome and translatome co-evolution in mammals , 2020, Nature.

[11]  P. Zandi,et al.  lncRNAKB, a knowledgebase of tissue-specific functional annotation and trait association of long noncoding RNA , 2020, Scientific data.

[12]  J. Ragoussis,et al.  Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons , 2020, Nature Neuroscience.

[13]  Zachary S. Lorsch,et al.  Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression , 2020, Neuron.

[14]  M. Mann,et al.  Pervasive functional translation of noncanonical human open reading frames , 2020, Science.

[15]  J. Harper,et al.  Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling , 2020, Molecular cell.

[16]  B. Deplancke,et al.  Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons , 2019, Science Advances.

[17]  Sarah A. Slavoff,et al.  Proteomic Detection and Validation of Translated Small Open Reading Frames , 2019, Current protocols in chemical biology.

[18]  John F Ouyang,et al.  deltaTE: Detection of Translationally Regulated Genes by Integrative Analysis of Ribo‐seq and RNA‐seq Data , 2019, Current protocols in molecular biology.

[19]  Bin Zhang,et al.  Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation , 2019, bioRxiv.

[20]  Fei Zou,et al.  SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references , 2019, bioRxiv.

[21]  Catherine L. Worth,et al.  The Translational Landscape of the Human Heart , 2019, Cell.

[22]  Alan M. Moses,et al.  Proteome-wide signatures of function in highly diverged intrinsically disordered regions , 2019, bioRxiv.

[23]  N. Sonenberg,et al.  Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation , 2019, Proceedings of the National Academy of Sciences.

[24]  A. Feinberg,et al.  Neuronal brain region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability , 2018, Nature Neuroscience.

[25]  Yi-shuian Huang,et al.  Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism‐Risk Genes Involved in Translation , 2018, Developmental neurobiology.

[26]  S. Small,et al.  Glutamate Dehydrogenase–Deficient Mice Display Schizophrenia-Like Behavioral Abnormalities and CA1-Specific Hippocampal Dysfunction , 2019, Schizophrenia bulletin.

[27]  R. Vernon,et al.  RGG/RG Motif Regions in RNA Binding and Phase Separation. , 2018, Journal of molecular biology.

[28]  E. Olson,et al.  The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy , 2018, eLife.

[29]  Zhe Ji,et al.  RibORF: Identifying Genome‐Wide Translated Open Reading Frames Using Ribosome Profiling , 2018, Current protocols in molecular biology.

[30]  Jeffrey T Leek,et al.  Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis , 2018, Nature Neuroscience.

[31]  R. Ramírez-Barrantes,et al.  Proteostasis and Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives , 2018, Neural plasticity.

[32]  Craig R. Malloy,et al.  MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation , 2018, Cell reports.

[33]  Lindy E. Barrett,et al.  Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission , 2018, Cell reports.

[34]  Rory Johnson,et al.  Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs , 2017, bioRxiv.

[35]  Tao Liu,et al.  Genome-wide identification and differential analysis of translational initiation , 2017, Nature Communications.

[36]  S. Ackerman,et al.  Regulation of mRNA Translation in Neurons—A Matter of Life and Death , 2017, Neuron.

[37]  A. Silahtaroglu,et al.  The DLGAP family: neuronal expression, function and role in brain disorders , 2017, Molecular Brain.

[38]  Nicholas T Ingolia,et al.  Transcriptome-wide measurement of translation by ribosome profiling. , 2017, Methods.

[39]  Anne-Claude Gingras,et al.  Regulatory Expansion in Mammals of Multivalent hnRNP Assemblies that Globally Control Alternative Splicing , 2017, Cell.

[40]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[41]  R. Young,et al.  A Phase Separation Model for Transcriptional Control , 2017, Cell.

[42]  Jiao Ma,et al.  A human microprotein that interacts with the mRNA decapping complex , 2016, Nature chemical biology.

[43]  Athar N. Malik,et al.  Evolution of Osteocrin as an activity-regulated factor in the primate brain , 2016, Nature.

[44]  T. Iidaka,et al.  Resequencing and Association Analysis of Six PSD-95-Related Genes as Possible Susceptibility Genes for Schizophrenia and Autism Spectrum Disorders , 2016, Scientific Reports.

[45]  Alexander F Schier,et al.  Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish , 2016, Nature Communications.

[46]  Uwe Ohler,et al.  Detecting actively translated open reading frames in ribosome profiling data , 2015, Nature Methods.

[47]  Robert D. Finn,et al.  The Dfam database of repetitive DNA families , 2015, Nucleic Acids Res..

[48]  Aviv Regev,et al.  A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation. , 2015, Molecular cell.

[49]  A. Regev,et al.  Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins , 2015, eLife.

[50]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[51]  L. Selemon,et al.  Schizophrenia: a tale of two critical periods for prefrontal cortical development , 2015, Translational Psychiatry.

[52]  B. Viollet,et al.  Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. , 2015, Cell metabolism.

[53]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[54]  Ying Chen Eyre-Walker,et al.  Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq , 2014, eLife.

[55]  R. Guigó,et al.  The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs , 2014, RNA.

[56]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[57]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[58]  Alan Saghatelian,et al.  A Human Short Open Reading Frame (sORF)-encoded Polypeptide That Stimulates DNA End Joining* , 2014, The Journal of Biological Chemistry.

[59]  Rachel Green,et al.  Dom34 Rescues Ribosomes in 3′ Untranslated Regions , 2014, Cell.

[60]  Andy H. Choi,et al.  Current Perspectives , 2013, Journal of dental research.

[61]  Zev N. Kronenberg,et al.  Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs , 2013, PLoS genetics.

[62]  D. Muller,et al.  Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission , 2012, Journal of neurochemistry.

[63]  R. Parker,et al.  RGG motif proteins: Modulators of mRNA functional states , 2012, Cell cycle.

[64]  Nicholas T. Ingolia,et al.  High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling , 2011, Science.

[65]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[66]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[67]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[68]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[69]  Mark F. Bear,et al.  The Autistic Neuron: Troubled Translation? , 2008, Cell.

[70]  John D. Lambris,et al.  The Classical Complement Cascade Mediates CNS Synapse Elimination , 2007, Cell.

[71]  Tomislav Domazet-Loso,et al.  A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. , 2007, Trends in genetics : TIG.

[72]  Jaime Prilusky,et al.  FoldIndex copyright: a simple tool to predict whether a given protein sequence is intrinsically unfolded , 2005, Bioinform..

[73]  J. Beckmann,et al.  FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded , 2005 .

[74]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[75]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[76]  C. Shatz,et al.  Functional requirement for class I MHC in CNS development and plasticity. , 2000, Science.

[77]  S. Scherer,et al.  Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. , 1997, Genomics.

[78]  J. Klaudiny,et al.  Characterization by cDNA cloning of the mRNA of a highly basic human protein homologous to the yeast ribosomal protein YL41. , 1992, Biochemical and biophysical research communications.

[79]  R. Perry,et al.  Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control. , 1991, Proceedings of the National Academy of Sciences of the United States of America.