Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images

[1]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  A. Rényi On Measures of Entropy and Information , 1961 .

[4]  J. Royston The W Test for Normality , 1982 .

[5]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[6]  Silviu Guiasu,et al.  The principle of maximum entropy , 1985 .

[7]  Bart Kosko,et al.  Fuzzy entropy and conditioning , 1986, Inf. Sci..

[8]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[9]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[10]  Robert M. Gray,et al.  Entropy and Information , 1990 .

[11]  Vinod Chandran,et al.  Shape discrimination using invariants defined from higher-order spectra , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[12]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[13]  Randy Kerber,et al.  ChiMerge: Discretization of Numeric Attributes , 1992, AAAI.

[14]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[15]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[16]  B. Boashash,et al.  Pattern recognition using invariants defined from higher order spectra: 2-D image inputs , 1997, IEEE Trans. Image Process..

[17]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[18]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[19]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[20]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[21]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[22]  C. Barden,et al.  Discrimination of Benign and Malignant Thyroid Nodules by Molecular Profiling , 2004, Annals of surgery.

[23]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[24]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[25]  Daren Yu,et al.  Entropies Of Fuzzy Indiscernibility Relation And Its Operations , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[26]  William Stafford Noble,et al.  Support vector machine , 2013 .

[27]  Zhi-Hua Zhou,et al.  Exploratory Under-Sampling for Class-Imbalance Learning , 2006, Sixth International Conference on Data Mining (ICDM'06).

[28]  Nikos Dimitropoulos,et al.  Computational Characterization of Thyroid Tissue in the Radon Domain , 2007, Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07).

[29]  Francisco Herrera,et al.  A Study on the Use of Statistical Tests for Experimentation with Neural Networks , 2007, IWANN.

[30]  Kun Zhou,et al.  Locality Sensitive Discriminant Analysis , 2007, IJCAI.

[31]  Jeong Hyun Lee,et al.  Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. , 2008, Radiology.

[32]  Qinghua Hu,et al.  Fuzzy entropy based Max-Relevancy and Min-Redundancy feature selection , 2008, 2008 IEEE International Conference on Granular Computing.

[33]  Sumeet Dua,et al.  Patient classification using association mining of clinical images , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[34]  Jinko Kanno,et al.  Protein Structure Classification Based on Conserved Hydrophobic Residues , 2009, IEEE ACM Trans. Comput. Biol. Bioinform..

[35]  Sumeet Dua,et al.  Associative classification of mammograms using weighted rules , 2009, Expert Syst. Appl..

[36]  Sumeet Dua,et al.  Association Rule Based Feature Extraction for Character Recognition , 2009, ICISTM.

[37]  Sumeet Dua,et al.  Bi-clustering of Gene Expression Data Using Conditional Entropy , 2009, PRIB.

[38]  Zhi-Hua Zhou,et al.  Exploratory Undersampling for Class-Imbalance Learning , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[39]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[40]  C. M. Lim,et al.  Automatic identification of epileptic electroencephalography signals using higher-order spectra , 2009, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[41]  Chumphol Bunkhumpornpat,et al.  Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem , 2009, PAKDD.

[42]  Yu-rong Hong,et al.  Real‐time Ultrasound Elastography in the Differential Diagnosis of Benign and Malignant Thyroid Nodules , 2009, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[43]  U. Rajendra Acharya,et al.  Application of Higher Order Spectra to Identify Epileptic EEG , 2011, Journal of Medical Systems.

[44]  Michael P. Dessauer,et al.  Discriminative features and classification methods for accurate classification , 2010, Defense + Commercial Sensing.

[45]  Michael P. Dessauer,et al.  Low-resolution vehicle tracking using dense and reduced local gradient features maps , 2010, Defense + Commercial Sensing.

[46]  Michael P. Dessauer,et al.  Multi-scale graph theoretic image segmentation using wavelet decomposition , 2010, Defense + Commercial Sensing.

[47]  Dimitrios K. Iakovidis,et al.  ΤND: A Thyroid Nodule Detection System for Analysis of Ultrasound Images and Videos , 2012, Journal of Medical Systems.

[48]  Sumeet Dua,et al.  Region Quad-Tree Decomposition Based Edge Detection for Medical Images , 2010, The open medical informatics journal.

[49]  Dimitrios K. Iakovidis,et al.  Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns , 2010, Artif. Intell. Medicine.

[50]  Sumeet Dua,et al.  Ranking through integration of protein-similarity for identification of cell-cyclic genes , 2010, Int. J. Bioinform. Res. Appl..

[51]  Sumeet Dua,et al.  Cancer prognosis using support vector regression in imaging modality. , 2011, World journal of clinical oncology.

[52]  J. Suri,et al.  Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms , 2011, Technology in cancer research & treatment.

[53]  Dimitris K. Iakovidis,et al.  Computer-Based Nodule Malignancy Risk Assessment in Thyroid Ultrasound Images , 2011 .

[54]  Jianrui Ding,et al.  Quantitative Measurement for Thyroid Cancer Characterization Based on Elastography , 2011, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[55]  Francisco Herrera,et al.  SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory , 2012, Knowledge and Information Systems.

[56]  G. Swanson,et al.  Radiobiological and Dosimetric Analysis of Daily Megavoltage CT Registration on Adaptive Radiotherapy with Helical Tomotherapy , 2011, Technology in cancer research & treatment.

[57]  Nitesh V. Chawla,et al.  Learning from Imbalanced Data: Evaluation Matters , 2012 .

[58]  U. Rajendra Acharya,et al.  ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform , 2012, Comput. Methods Programs Biomed..

[59]  Caroline Ewertsen,et al.  Stanzbiopsie eines kleinen retroperitonealen Lymphoms gestützt durch Bildfusion und elektromagnetischem Nadel-Tracking , 2012 .

[60]  Francisco Herrera,et al.  A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[61]  S. Lipsitz,et al.  An extension of the Wilcoxon rank sum test for complex sample survey data , 2012, Journal of the Royal Statistical Society. Series C, Applied statistics.

[62]  U Rajendra Acharya,et al.  Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. , 2012, Ultrasonics.

[63]  Aamir Khan,et al.  Principal Component Analysis-Linear Discriminant Analysis Feature Extractor for Pattern Recognition , 2012, ArXiv.

[64]  João L. Fernandes,et al.  A SIGNAL-TUNED GABOR TRANSFORM WITH APPLICATION TO EEG ANALYSIS , 2013 .

[65]  Vijay P. Singh,et al.  Principle of Maximum Entropy , 2013 .

[66]  U. Rajendra Acharya,et al.  Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform , 2013, Knowl. Based Syst..

[67]  U. Rajendra Acharya,et al.  Automated detection of diabetes using higher order spectral features extracted from heart rate signals , 2013, Intell. Data Anal..

[68]  U. Rajendra Acharya,et al.  Automated EEG analysis of epilepsy: A review , 2013, Knowl. Based Syst..

[69]  Francisco Herrera,et al.  An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics , 2013, Inf. Sci..

[70]  Marco Zaffalon,et al.  A Bayesian Wilcoxon signed-rank test based on the Dirichlet process , 2014, ICML.

[71]  S Vinitha Sree,et al.  Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. , 2014, Ultraschall in der Medizin.

[72]  Agnieszka Witkowska,et al.  A Review on Ultrasound-Based Thyroid Cancer Tissue Characterization and Automated Classification , 2014, Technology in cancer research & treatment.

[73]  Varshika Pandey,et al.  MRI Image Segmentation Using Shannon and Non Shannon Entropy Measures , 2014 .

[74]  Xiaogang Wang,et al.  Stable locality sensitive discriminant analysis for image recognition , 2014, Neural Networks.

[75]  Kevin Noronha,et al.  Decision support system for the glaucoma using Gabor transformation , 2015, Biomed. Signal Process. Control..

[76]  U. Rajendra Acharya,et al.  Application of entropies for automated diagnosis of epilepsy using EEG signals: A review , 2015, Knowl. Based Syst..

[77]  U. Rajendra Acharya,et al.  Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review , 2016, Comput. Biol. Medicine.

[78]  Namkug Kim,et al.  Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments. , 2016, Medical physics.

[79]  Francisco Herrera,et al.  Tutorial on practical tips of the most influential data preprocessing algorithms in data mining , 2016, Knowl. Based Syst..

[80]  Gunamani Jena,et al.  Image Enhancement Using FUZZY Set , 2017 .