Chapter 10 Functional differential equations

[1]  H. Walther,et al.  The structure of an attracting set defined by delayed and monotone positive feedback , 1999 .

[2]  Dirk Roose,et al.  COMPUTATION, CONTINUATION AND BIFURCATION ANALYSIS OF PERIODIC SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS , 1997 .

[3]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[4]  Yulin Cao,et al.  Uniqueness of Periodic Solution for Differential Delay Equations , 1996 .

[5]  G. Sell,et al.  Systems of Differential Delay Equations: Floquet Multipliers and Discrete Lyapunov Functions , 1996 .

[6]  G. Sell,et al.  THE POINCARE-BENDIXSON THEOREM FOR MONOTONE CYCLIC FEEDBACK SYSTEMS WITH DELAY , 1996 .

[7]  Joseph M. Mahaffy,et al.  A GEOMETRIC ANALYSIS OF STABILITY REGIONS FOR A LINEAR DIFFERENTIAL EQUATION WITH TWO DELAYS , 1995 .

[8]  A. Herz Solutions of ẋ(t)=−g(x(t−1)) Approach the Kaplan-Yorke Orbits for Odd Sigmoid g , 1995 .

[9]  John Mallet-Paret,et al.  Periodic solutions for functional differential equations with multiple state-depend time lags , 1994 .

[10]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[11]  J. Hale,et al.  Global geometry of the stable regions for two delay differential equations , 1993 .

[12]  Xianwen Xie,et al.  Uniqueness and Stability of Slowly Oscillating Periodic Solutions of Delay Equations with Unbounded Nonlinearity , 1993 .

[13]  J. Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. , 1992 .

[14]  Yang Kuang,et al.  Slowly oscillating periodic solutions of autonomous state-dependent delay equations , 1992 .

[15]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[16]  M. A. Kaashoek,et al.  Characteristic matrices and spectral properties of evolutionary systems , 1992 .

[17]  Xianwen Xie,et al.  The multiplier equation and its application to S-solutions of a differential delay equation , 1992 .

[18]  Xianwen Xie,et al.  Uniqueness and stability of slowly oscillating periodic solutions of delay equations with bounded nonlinearity , 1991 .

[19]  C. Fenske An index for periodic orbits of functional differential equations , 1989 .

[20]  R. Nussbaum Wright's equation has no solutions of period four , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  John Mallet-Paret,et al.  A differential-delay equation arising in optics and physiology , 1989 .

[22]  J. Mallet-Paret Morse Decompositions for delay-differential equations , 1988 .

[23]  Krzysztof P. Rybakowski,et al.  The Homotopy Index and Partial Differential Equations , 1987 .

[24]  J.M.T. Thompson,et al.  Chaotic dynamics and fractals , 1987 .

[25]  John Mallet-Paret,et al.  Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation , 1986 .

[26]  Roger D. Nussbaum,et al.  The Fixed Point Index And Some Applications , 1985 .

[27]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[28]  R. Nussbaum Asymptotic analysis of functional differential equations and solutions of long period , 1983 .

[29]  Roger D. Nussbaum,et al.  Uniqueness and nonuniqueness for periodic solutions of x′(t) = −g(x(t − 1)) , 1979 .

[30]  Shui-Nee Chow,et al.  The Fuller index and global Hopf bifurcation , 1978 .

[31]  R. Nussbaum A Hopf global bifurcation theorem for retarded functional differential equations , 1978 .

[32]  R. Nussbaum Generalizing the fixed point index , 1977 .

[33]  Roger D. Nussbaum,et al.  The range of periods of periodic solutions of x′(t) = − αf(x(t − 1)) , 1977 .

[34]  James A. Yorke,et al.  On the nonlinear differential delay equation x′(t) = −f(x(t), x(t − 1)) , 1977 .

[35]  Roger D. Nussbaum,et al.  A global bifurcation theorem with applications to functional differential equations , 1975 .

[36]  James A. Yorke,et al.  On the Stability of a Periodic Solution of a Differential Delay Equation , 1975 .

[37]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[38]  R. Nussbaum A correction of "periodic solutions of some nonlinear, autonomous functional differential equations. II" , 1974 .

[39]  James A. Yorke,et al.  Ordinary differential equations which yield periodic solutions of differential delay equations , 1974 .

[40]  Roger D. Nussbaum,et al.  Periodic solutions of analytic functional differential equations are analytic. , 1973 .

[41]  Roger D. Nussbaum,et al.  Periodic solutions of some nonlinear, autonomous functional differential equations. II , 1973 .

[42]  J. Hale Functional Differential Equations , 1971 .

[43]  F. Browder Asymptotic fixed point theorems , 1970 .

[44]  B. Levinger,et al.  A folk theorem in functional differential equations , 1968 .

[45]  G.Stephen Jones,et al.  The existence of periodic solutions of f′(x) = − αf(x − 1){1 + f(x)} , 1962 .

[46]  O. Hanner Retraction and extension of mappings of metric and nonmetric spaces , 1952 .

[47]  J. Dugundji An extension of Tietze's theorem. , 1951 .

[48]  O. Hanner,et al.  Some theorems on absolute neighborhood retracts , 1951 .

[49]  N. D. Hayes Roots of the Transcendental Equation Associated with a Certain Difference‐Differential Equation , 1950 .

[50]  E. Schmidt Über eine Klasse linearer funktionaler Differentialgleichungen , 1911 .

[51]  Tibor Krisztin,et al.  Unique Periodic Orbits for Delayed Positive Feedback and the Global Attractor , 2001 .

[52]  Dirk Roose,et al.  Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations , 1999, Adv. Comput. Math..

[53]  C. Fenske An index for periodic orbits of local semidynamical systems , 1998 .

[54]  John Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state dependent time lags: II. , 1996 .

[55]  Konstantin Mischaikow,et al.  On the global dynamics of attractors for scalar delay equations , 1996 .

[56]  H L Smith,et al.  Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study. , 1993, Mathematical biosciences.

[57]  R. Nussbaum The fixed point index and fixed point theorems , 1993 .

[58]  John Mallet-Paret,et al.  Multiple transition layers in a singularly perturbed differential-delay equation , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[59]  H. Walther An invariant manifold of slowly oscillating solutions for , 1991 .

[60]  J. Mallet-Paret,et al.  Connections between Morse sets for delay-differential equations. , 1989 .

[61]  Shui-Nee Chow,et al.  Characteristic multipliers and stability of symmetric periodic solutions of x'(t)=g(x(t−1)) , 1988 .

[62]  J. Mallet-Paret,et al.  A BIFURCATION GAP FOR A SINGULARLY PERTURBED DELAY EQUATION , 1986 .

[63]  Roger D. Nussbaum,et al.  Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem , 1981 .

[64]  R. Nussbaum Periodic solutions of special differential equations: an example in non-linear functional analysis , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[65]  Roger D. Nussbaum,et al.  Differential-delay equations with two time lags , 1978 .

[66]  A. Granas,et al.  The Leray-Schauder index and the fixed point theory for arbitrary ANRs , 1972 .

[67]  F. B. Fuller,et al.  An Index of Fixed Point Type for Periodic Orbits , 1967 .

[68]  Karol Borsuk,et al.  Theory Of Retracts , 1967 .

[69]  Tosio Kato Perturbation theory for linear operators , 1966 .

[70]  S. Kinoshita On some contractible continua without fixed point property , 1953 .

[71]  E. M. Wright A non-linear difference-differential equation. , 1946 .